HOME

TheInfoList



OR:

In
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary ...
and
genetics Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar work ...
, the germline is the population of a
multicellular organism A multicellular organism is an organism that consists of more than one cell, in contrast to unicellular organism. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially uni ...
's cells that pass on their genetic material to the progeny (
offspring In biology, offspring are the young creation of living organisms, produced either by a single organism or, in the case of sexual reproduction, two organisms. Collective offspring may be known as a brood or progeny in a more general way. This ca ...
). In other words, they are the cells that form the egg,
sperm Sperm is the male reproductive cell, or gamete, in anisogamous forms of sexual reproduction (forms in which there is a larger, female reproductive cell and a smaller, male one). Animals produce motile sperm with a tail known as a flagellum, ...
and the fertilised egg. They are usually differentiated to perform this function and segregated in a specific place away from other bodily cells. As a rule, this passing-on happens via a process of
sexual reproduction Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete ( haploid reproductive cells, such as a sperm or egg cell) with a single set of chromosomes combines with another gamete to produce a zygote th ...
; typically it is a process that includes systematic changes to the genetic material, changes that arise during recombination,
meiosis Meiosis (; , since it is a reductional division) is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately ...
and
fertilization Fertilisation or fertilization (see spelling differences), also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a new individual organism or offspring and initiate its development. Pro ...
for example. However, there are many exceptions across multicellular organisms, including processes and concepts such as various forms of
apomixis In botany, apomixis is asexual reproduction without fertilization. Its etymology is Greek for "away from" + "mixing". This definition notably does not mention meiosis. Thus "normal asexual reproduction" of plants, such as propagation from cuttin ...
, autogamy, automixis, cloning or
parthenogenesis Parthenogenesis (; from the Greek grc, παρθένος, translit=parthénos, lit=virgin, label=none + grc, γένεσις, translit=génesis, lit=creation, label=none) is a natural form of asexual reproduction in which growth and developmen ...
. The cells of the germline are called
germ cell Germ or germs may refer to: Science * Germ (microorganism), an informal word for a pathogen * Germ cell, cell that gives rise to the gametes of an organism that reproduces sexually * Germ layer, a primary layer of cells that forms during embr ...
s. For example,
gamete A gamete (; , ultimately ) is a haploid cell that fuses with another haploid cell during fertilization in organisms that reproduce sexually. Gametes are an organism's reproductive cells, also referred to as sex cells. In species that produce ...
s such as a sperm and an egg are germ cells. So are the cells that divide to produce gametes, called
gametocyte A gametocyte is a eukaryotic germ cell that divides by mitosis into other gametocytes or by meiosis into gametids during gametogenesis. Male gametocytes are called '' spermatocytes'', and female gametocytes are called ''oocytes''. Developmen ...
s, the cells that produce those, called
gametogonia Gametogonium (plural gametogonia) are stem cells for gametes located within the gonads. They originate from primordial germ cells, which have migrated to the gonads. Male gametogonia which are located within the testes during development and adu ...
, and all the way back to the
zygote A zygote (, ) is a eukaryotic cell formed by a fertilization event between two gametes. The zygote's genome is a combination of the DNA in each gamete, and contains all of the genetic information of a new individual organism. In multicell ...
, the cell from which an individual develops. In sexually reproducing organisms, cells that are not in the germline are called
somatic cell A somatic cell (from Ancient Greek σῶμα ''sôma'', meaning "body"), or vegetal cell, is any biological cell forming the body of a multicellular organism other than a gamete, germ cell, gametocyte or undifferentiated stem cell. Such cells com ...
s. According to this view,
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
s, recombinations and other genetic changes in the germline may be passed to offspring, but a change in a somatic cell will not be. This need not apply to somatically reproducing organisms, such as some
Porifera Sponges, the members of the phylum Porifera (; meaning 'pore bearer'), are a basal animal clade as a sister of the diploblasts. They are multicellular organisms that have bodies full of pores and channels allowing water to circulate through t ...
and many plants. For example, many varieties of
citrus ''Citrus'' is a genus of flowering trees and shrubs in the rue family, Rutaceae. Plants in the genus produce citrus fruits, including important crops such as oranges, lemons, grapefruits, pomelos, and limes. The genus ''Citrus'' is native to ...
, plants in the
Rosaceae Rosaceae (), the rose family, is a medium-sized family of flowering plants that includes 4,828 known species in 91 genera. The name is derived from the type genus ''Rosa''. Among the most species-rich genera are '' Alchemilla'' (270), ''Sorb ...
and some in the
Asteraceae The family Asteraceae, alternatively Compositae, consists of over 32,000 known species of flowering plants in over 1,900 genera within the order Asterales. Commonly referred to as the aster, daisy, composite, or sunflower family, Compositae ...
, such as '' Taraxacum'' produce seeds apomictically when somatic
diploid Ploidy () is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respectiv ...
cells displace the ovule or early embryo. In an earlier stage of genetic thinking, there was a clear distinction between germline and somatic cells. For example, August Weismann proposed and pointed out, a germline cell is immortal in the sense that it is part of a lineage that has reproduced indefinitely since the beginning of life and, barring accident, could continue doing so indefinitely. However, it is now known in some detail that this distinction between somatic and germ cells is partly artificial and depends on particular circumstances and internal cellular mechanisms such as telomeres and controls such as the selective application of
telomerase Telomerase, also called terminal transferase, is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most euk ...
in germ cells, stem cells and the like. Not all multicellular organisms differentiate into somatic and germ lines, but in the absence of specialised technical human intervention practically all but the simplest multicellular structures do so. In such organisms somatic cells tend to be practically totipotent, and for over a century sponge cells have been known to reassemble into new sponges after having been separated by forcing them through a sieve. ''Germline'' can refer to a lineage of cells spanning many generations of individuals—for example, the germline that links any living individual to the hypothetical last universal common ancestor, from which all plants and animals descend.


Evolution

Plants and basal metazoans such as sponges (Porifera) and corals (Anthozoa) do not sequester a distinct germline, generating gametes from multipotent stem cell lineages that also give rise to ordinary somatic tissues. It is therefore likely that germline sequestration first evolved in complex animals with sophisticated body plans, i.e. bilaterians. There are several theories on the origin of the strict germline-soma distinction. Setting aside an isolated germ cell population early in embryogenesis might promote cooperation between the somatic cells of a complex multicellular organism. Another recent theory suggests that early germline sequestration evolved to limit the accumulation of deleterious mutations in mitochondrial genes in complex organisms with high energy requirements and fast mitochondrial mutation rates.


DNA damage, mutation and repair

Reactive oxygen species (ROS) are produced as byproducts of metabolism. In germline cells, ROS are likely a significant cause of
DNA damage DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA d ...
s that, upon
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritan ...
, lead to
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
s. 8-Oxoguanine, an oxidized derivative of
guanine Guanine () ( symbol G or Gua) is one of the four main nucleobases found in the nucleic acids DNA and RNA, the others being adenine, cytosine, and thymine ( uracil in RNA). In DNA, guanine is paired with cytosine. The guanine nucleoside is ...
, is produced by spontaneous oxidation in the germline cells of mice, and during the cell's DNA replication cause GC to TA transversion mutations. Such mutations occur throughout the mouse
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins ar ...
s as well as during different stages of gametogenesis. The mutation frequencies for cells in different stages of gametogenesis are about 5 to 10-fold lower than in
somatic cell A somatic cell (from Ancient Greek σῶμα ''sôma'', meaning "body"), or vegetal cell, is any biological cell forming the body of a multicellular organism other than a gamete, germ cell, gametocyte or undifferentiated stem cell. Such cells com ...
s both for
spermatogenesis Spermatogenesis is the process by which haploid spermatozoa develop from germ cells in the seminiferous tubules of the testis. This process starts with the mitotic division of the stem cells located close to the basement membrane of the tubu ...
and
oogenesis Oogenesis, ovogenesis, or oögenesis is the differentiation of the ovum (egg cell) into a cell competent to further develop when fertilized. It is developed from the primary oocyte by maturation. Oogenesis is initiated in the embryonic stage. ...
. The lower frequencies of mutation in germline cells compared to somatic cells appears to be due to more efficient
DNA repair DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA d ...
of DNA damages, particularly
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may ...
al repair, during germline
meiosis Meiosis (; , since it is a reductional division) is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately ...
.Bernstein H, Byerly HC, Hopf FA, Michod RE. Genetic damage, mutation, and the evolution of sex. Science. 1985 Sep 20;229(4719):1277-81. doi: 10.1126/science.3898363. PMID 3898363 Among humans, about five percent of live-born offspring have a genetic disorder, and of these, about 20% are due to newly arisen germline mutations.


Epigenetic alterations

Epigenetic alterations of DNA include modifications that affect gene expression, but are not caused by changes in the sequence of bases in DNA. A well-studied example of such an alteration is the
methylation In the chemical sciences, methylation denotes the addition of a methyl group on a substrate, or the substitution of an atom (or group) by a methyl group. Methylation is a form of alkylation, with a methyl group replacing a hydrogen atom. These ...
of DNA cytosine to form 5-methylcytosine. This usually occurs in the DNA sequence CpG, changing the DNA at the CpG site from CpG to 5-mCpG. Methylation of cytosines in CpG sites in promoter regions of genes can reduce or silence gene expression. About 28 million CpG dinucleotides occur in the human genome, and about 24 million CpG sites in the mouse genome (which is 86% as large as the human genome). In most tissues of mammals, on average, 70% to 80% of CpG cytosines are methylated (forming 5-mCpG). In the mouse, by days 6.25 to 7.25 after fertilization of an egg by a sperm, cells in the embryo are set aside as primordial germ cells (PGCs). These PGCs will later give rise to germline sperm cells or egg cells. At this point the PGCs have high typical levels of methylation. Then primordial germ cells of the mouse undergo genome-wide DNA demethylation, followed by subsequent new methylation to reset the epigenome in order to form an egg or sperm. In the mouse, PGCs undergo DNA demethylation in two phases. The first phase, starting at about embryonic day 8.5, occurs during PGC proliferation and migration, and it results in genome-wide loss of methylation, involving almost all genomic sequences. This loss of methylation occurs through passive demethylation due to repression of the major components of the methylation machinery. The second phase occurs during embryonic days 9.5 to 13.5 and causes demethylation of most remaining specific loci, including germline-specific and meiosis-specific genes. This second phase of demethylation is mediated by the TET enzymes TET1 and TET2, which carry out the first step in demethylation by converting 5-mC to 5-hydroxymethylcytosine (5-hmC) during embryonic days 9.5 to 10.5. This is likely followed by replication-dependent dilution during embryonic days 11.5 to 13.5. At embryonic day 13.5, PGC genomes display the lowest level of global DNA methylation of all cells in the life cycle. In the mouse, the great majority of differentially expressed genes in PGCs from embryonic day 9.5 to 13.5, when most genes are demethylated, are upregulated in both male and female PGCs. Following erasure of DNA methylation marks in mouse PGCs, male and female germ cells undergo new methylation at different time points during gametogenesis. While undergoing mitotic expansion in the developing gonad, the male germline starts the re-methylation process by embryonic day 14.5. The sperm-specific methylation pattern is maintained during mitotic expansion. DNA methylation levels in primary oocytes before birth remain low, and re-methylation occurs after birth in the oocyte growth phase.


See also

* August Weismann *
Epigenetics In biology, epigenetics is the study of stable phenotypic changes (known as ''marks'') that do not involve alterations in the DNA sequence. The Greek prefix '' epi-'' ( "over, outside of, around") in ''epigenetics'' implies features that are ...
* Germ line development *
Germinal choice technology Germinal may refer to: *Germinal (French Republican Calendar), the seventh month of the calendar, approximately March 21 - April 19 Émile Zola * ''Germinal'' (novel), an 1885 novel by Émile Zola ** ''Germinal'' (1913 film), a French silent film ...
* Weismann barrier


References

{{Authority control Developmental biology *