HOME

TheInfoList



OR:

The geology of Mars is the scientific study of the surface, crust, and interior of the planet
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
. It emphasizes the composition, structure, history, and physical processes that shape the planet. It is analogous to the field of terrestrial
geology Geology () is a branch of natural science concerned with Earth and other astronomical objects, the features or rocks of which it is composed, and the processes by which they change over time. Modern geology significantly overlaps all other Ea ...
. In planetary science, the term ''geology'' is used in its broadest sense to mean the study of the solid parts of planets and moons. The term incorporates aspects of
geophysics Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' so ...
,
geochemistry Geochemistry is the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth's crust and its oceans. The realm of geochemistry extends beyond the Earth, encompassing the ...
, mineralogy, geodesy, and
cartography Cartography (; from grc, χάρτης , "papyrus, sheet of paper, map"; and , "write") is the study and practice of making and using maps. Combining science, aesthetics and technique, cartography builds on the premise that reality (or an i ...
. A
neologism A neologism Greek νέο- ''néo''(="new") and λόγος /''lógos'' meaning "speech, utterance"] is a relatively recent or isolated term, word, or phrase that may be in the process of entering common use, but that has not been fully accepted int ...
, areology, from the Greek word ''Arēs'' (Mars), sometimes appears as a synonym for Mars's geology in the popular media and works of science fiction (e.g. Kim Stanley Robinson, Kim Stanley Robinson's
Mars trilogy The ''Mars'' trilogy is a series of science fiction novels by Kim Stanley Robinson that chronicles the settlement and terraforming of the planet Mars through the personal and detailed viewpoints of a wide variety of characters spanning almost tw ...
). The term areology is also used by the Areological Society.


Geological map of Mars (2014)

File:Geologic Map of Mars figure2.pdf, Figure 2 for the geologic map of Mars


Global Martian topography and large-scale features


Composition of Mars

Mars is a
terrestrial planet A terrestrial planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to the Sun: Mercury, ...
, which has undergone the process of
planetary differentiation In planetary science, planetary differentiation is the process by which the chemical elements of a planetary body accumulate in different areas of that body, due to their physical or chemical behavior (e.g. density and chemical affinities). The p ...
. The ''
InSight Insight is the understanding of a specific cause and effect within a particular context. The term insight can have several related meanings: *a piece of information *the act or result of understanding the inner nature of things or of seeing intui ...
'' lander mission is designed to study the deep interior of Mars. The mission landed on 26 November 2018. and deployed a sensitive
seismometer A seismometer is an instrument that responds to ground noises and shaking such as caused by earthquakes, volcanic eruptions, and explosions. They are usually combined with a timing device and a recording device to form a seismograph. The outpu ...
to enable 3D structure mapping of the deep interior.


Global physiography

Mars has a number of distinct, large-scale surface features that indicate the types of geological processes that have operated on the planet over time. This section introduces several of the larger physiographic regions of Mars. Together, these regions illustrate how geologic processes involving
volcanism Volcanism, vulcanism or volcanicity is the phenomenon of eruption of molten rock (magma) onto the surface of the Earth or a solid-surface planet or moon, where lava, pyroclastics, and volcanic gases erupt through a break in the surface called a ...
, tectonism, water, ice, and impacts have shaped the planet on a global scale.


Hemispheric dichotomy

The northern and southern hemispheres of Mars are strikingly different from each other in
topography Topography is the study of the forms and features of land surfaces. The topography of an area may refer to the land forms and features themselves, or a description or depiction in maps. Topography is a field of geoscience and planetary sc ...
and physiography. This dichotomy is a fundamental global geologic feature of the planet. The northern part is an enormous topographic depression. About one-third of the surface (mostly in the northern hemisphere) lies 3–6 km lower in elevation than the southern two-thirds. This is a first-order relief feature on par with the elevation difference between Earth's continents and ocean basins. The dichotomy is also expressed in two other ways: as a difference in impact crater density and crustal thickness between the two hemispheres. The hemisphere south of the dichotomy boundary (often called the southern highlands or uplands) is very heavily cratered and ancient, characterized by rugged surfaces that date back to the period of
heavy bombardment Heavy may refer to: Measures * Heavy (aeronautics), a term used by pilots and air traffic controllers to refer to aircraft capable of 300,000 lbs or more takeoff weight * Heavy, a characterization of objects with substantial weight * Heavy, ...
. In contrast, the lowlands north of the dichotomy boundary have few large craters, are very smooth and flat, and have other features indicating that extensive resurfacing has occurred since the southern highlands formed. The third distinction between the two hemispheres is in crustal thickness. Topographic and geophysical gravity data indicate that the crust in the southern highlands has a maximum thickness of about , whereas crust in the northern lowlands "peaks" at around in thickness. The location of the dichotomy boundary varies in latitude across Mars and depends on which of the three physical expressions of the dichotomy is being considered. The origin and age of the hemispheric dichotomy are still debated. Hypotheses of origin generally fall into two categories: one, the dichotomy was produced by a mega-impact event or several large impacts early in the planet's history (exogenic theories) or two, the dichotomy was produced by crustal thinning in the northern hemisphere by mantle convection, overturning, or other chemical and thermal processes in the planet's interior (endogenic theories). One endogenic model proposes an early episode of
plate tectonics Plate tectonics (from the la, label=Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of large ...
producing a thinner crust in the north, similar to what is occurring at spreading plate boundaries on Earth. Whatever its origin, the Martian dichotomy appears to be extremely old. A new theory based on the Southern Polar Giant Impact and validated by the discovery of twelve hemispherical alignments shows that exogenic theories appear to be stronger than endogenic theories and that Mars never had plate tectonics that could modify the dichotomy. Laser altimeter and radar sounding data from orbiting spacecraft have identified a large number of basin-sized structures previously hidden in visual images. Called quasi-circular depressions (QCDs), these features likely represent derelict impact craters from the period of heavy bombardment that are now covered by a veneer of younger deposits. Crater counting studies of QCDs suggest that the underlying surface in the northern hemisphere is at least as old as the oldest exposed crust in the southern highlands. The ancient age of the dichotomy places a significant constraint on theories of its origin.


Tharsis and Elysium volcanic provinces

Straddling the dichotomy boundary in Mars's western hemisphere is a massive volcano-tectonic province known as the
Tharsis Tharsis () is a vast volcanic plateau centered near the equator in the western hemisphere of Mars. The region is home to the largest volcanoes in the Solar System, including the three enormous shield volcanoes Arsia Mons, Pavonis Mons, and Asc ...
region or the Tharsis bulge. This immense, elevated structure is thousands of kilometers in diameter and covers up to 25% of the planet's surface. Averaging 7–10 km above datum (Martian "sea" level), Tharsis contains the highest elevations on the planet and the largest known volcanoes in the Solar System. Three enormous volcanoes,
Ascraeus Mons Ascraeus Mons is a large shield volcano located in the Tharsis region of the planet Mars. It is the northernmost and tallest of three shield volcanoes collectively known as the Tharsis Montes. Discovery The volcano's location corresponds to t ...
,
Pavonis Mons Pavonis Mons (Latin for "peacock mountain") is a large shield volcano located in the Tharsis region of the planet Mars. It is the middle member of a chain of three volcanic mountains (collectively known as the Tharsis Montes) that straddle th ...
, and
Arsia Mons Arsia Mons is the southernmost of three volcanoes (collectively known as Tharsis Montes) on the Tharsis bulge near the equator of the planet Mars. To its north is Pavonis Mons, and north of that is Ascraeus Mons. The tallest volcano in the So ...
(collectively known as the Tharsis Montes), sit aligned NE-SW along the crest of the bulge. The vast Alba Mons (formerly Alba Patera) occupies the northern part of the region. The huge shield volcano Olympus Mons lies off the main bulge, at the western edge of the province. The extreme massiveness of Tharsis has placed tremendous stresses on the planet's lithosphere. As a result, immense extensional fractures ( grabens and
rift valley A rift valley is a linear shaped lowland between several highlands or mountain ranges created by the action of a geologic rift. Rifts are formed as a result of the pulling apart of the lithosphere due to extensional tectonics. The linear d ...
s) radiate outward from Tharsis, extending halfway around the planet. A smaller volcanic center lies several thousand kilometers west of Tharsis in Elysium. The Elysium volcanic complex is about 2,000 kilometers in diameter and consists of three main volcanoes,
Elysium Mons Elysium Mons is a volcano on Mars located in the volcanic province Elysium, at , in the Martian eastern hemisphere. It stands about above its base, and about above the Martian ''datum'', making it the third tallest Martian mountain in terms o ...
, Hecates Tholus, and Albor Tholus. The Elysium group of volcanoes is thought to be somewhat different from the Tharsis Montes, in that development of the former involved both lavas and pyroclastics.


Large impact basins

Several enormous, circular impact basins are present on Mars. The largest one that is readily visible is the Hellas basin located in the southern hemisphere. It is the second largest confirmed impact structure on the planet, centered at about 64°E longitude and 40°S latitude. The central part of the basin (Hellas Planitia) is 1,800 km in diameter and surrounded by a broad, heavily eroded
annular Annulus (or anulus) or annular indicates a ring- or donut-shaped area or structure. It may refer to: Human anatomy * '' Anulus fibrosus disci intervertebralis'', spinal structure * Annulus of Zinn, a.k.a. annular tendon or ''anulus tendineus co ...
rim structure characterized by closely spaced rugged irregular mountains (
massif In geology, a massif ( or ) is a section of a planet's crust that is demarcated by faults or flexures. In the movement of the crust, a massif tends to retain its internal structure while being displaced as a whole. The term also refers to a ...
s), which probably represent uplifted, jostled blocks of old pre-basin crust. (See Anseris Mons, for example.) Ancient, low-relief volcanic constructs (highland paterae) are located on the northeastern and southwestern portions of the rim. The basin floor contains thick, structurally complex sedimentary deposits that have a long geologic history of deposition, erosion, and internal deformation. The lowest elevations on the planet are located within the Hellas basin, with some areas of the basin floor lying over 8 km below datum. The two other large impact structures on the planet are the Argyre and Isidis basins. Like Hellas, Argyre (800 km in diameter) is located in the southern highlands and is surrounded by a broad ring of mountains. The mountains in the southern portion of the rim, Charitum Montes, may have been eroded by valley glaciers and ice sheets at some point in Mars's history. The Isidis basin (roughly 1,000 km in diameter) lies on the dichotomy boundary at about 87°E longitude. The northeastern portion of the basin rim has been eroded and is now buried by northern plains deposits, giving the basin a semicircular outline. The northwestern rim of the basin is characterized by
arcuate ''Arcuate'' (Latin for "curved") can refer to: Anatomy * Arcuate fasciculus * Arcuate line (disambiguation) * Arcuate artery (disambiguation), several arteries * Arcuate nucleus * Arcuate nucleus (medulla) * Arcuate ligaments of the diaphragm * A ...
grabens (
Nili Fossae Nili Fossae is a group of large, concentric grabens on Mars, in the Syrtis Major quadrangle. They have been eroded and partly filled in by sediments and clay-rich ejecta from a nearby giant impact crater, the Isidis basin. It is at approximat ...
) that are circumferential to the basin. One additional large basin,
Utopia A utopia ( ) typically describes an imaginary community or society that possesses highly desirable or nearly perfect qualities for its members. It was coined by Sir Thomas More for his 1516 book '' Utopia'', describing a fictional island societ ...
, is completely buried by northern plains deposits. Its outline is clearly discernable only from altimetry data. All of the large basins on Mars are extremely old, dating back to the late heavy bombardment. They are thought to be comparable in age to the Imbrium and Orientale basins on the Moon.


Equatorial canyon system

Near the equator in the western hemisphere lies an immense system of deep, interconnected canyons and troughs collectively known as the
Valles Marineris Valles Marineris (; Latin for '' Mariner Valleys'', named after the ''Mariner 9'' Mars orbiter of 1971–72 which discovered it) is a system of canyons that runs along the Martian surface east of the Tharsis region. At more than long, wide and ...
. The canyon system extends eastward from Tharsis for a length of over 4,000 km, nearly a quarter of the planet's circumference. If placed on Earth, Valles Marineris would span the width of North America. In places, the canyons are up to 300 km wide and 10 km deep. Often compared to Earth's Grand Canyon, the Valles Marineris has a very different origin than its tinier, so-called counterpart on Earth. The Grand Canyon is largely a product of water erosion. The Martian equatorial canyons were of tectonic origin, i.e. they were formed mostly by faulting. They could be similar to the East African Rift valleys. The canyons represent the surface expression of powerful extensional
strain Strain may refer to: Science and technology * Strain (biology), variants of plants, viruses or bacteria; or an inbred animal used for experimental purposes * Strain (chemistry), a chemical stress of a molecule * Strain (injury), an injury to a mu ...
in the Martian crust, probably due to loading from the Tharsis bulge.


Chaotic terrain and outflow channels

The terrain at the eastern end of the Valles Marineris grades into dense jumbles of low rounded hills that seem to have formed by the collapse of upland surfaces to form broad, rubble-filled hollows. Called chaotic terrain, these areas mark the heads of huge
outflow channels Outflow channels are extremely long, wide swathes of scoured ground on Mars. They extend many hundreds of kilometers in length and are typically greater than one kilometer in width. They are thought to have been carved by huge outburst floods. ...
that emerge full size from the chaotic terrain and empty (
debouch In hydrology, a debouch (or debouche) is a place where runoff from a small, confined space discharges into a larger, broader body of water. The word is derived from the French verb ''déboucher'' (), which means "to unblock, to clear". The term ...
) northward into Chryse Planitia. The presence of streamlined islands and other
geomorphic Geomorphology (from Ancient Greek: , ', "earth"; , ', "form"; and , ', "study") is the scientific study of the origin and evolution of topographic and bathymetric features created by physical, chemical or biological processes operating at or ...
features indicate that the channels were most likely formed by catastrophic releases of water from
aquifer An aquifer is an underground layer of water-bearing, permeable rock, rock fractures, or unconsolidated materials ( gravel, sand, or silt). Groundwater from aquifers can be extracted using a water well. Aquifers vary greatly in their characteris ...
s or the melting of subsurface ice. However, these features could also be formed by abundant volcanic lava flows coming from Tharsis. The channels, which include Ares, Shalbatana, Simud, and Tiu Valles, are enormous by terrestrial standards, and the flows that formed them correspondingly immense. For example, the peak discharge required to carve the 28-km-wide Ares Vallis is estimated to have been 14 million cubic metres (500 million cu ft) per second, over ten thousand times the average discharge of the Mississippi River.


Ice caps

The polar ice caps are well-known telescopic features of Mars, first identified by Christiaan Huygens in 1672. Since the 1960s, we have known that the seasonal caps (those seen in the telescope to grow and wane seasonally) are composed of carbon dioxide (CO2) ice that condenses out of the atmosphere as temperatures fall to 148 K, the frost point of CO2, during the polar wintertime. In the north, the CO2 ice completely dissipates ( sublimes) in summer, leaving behind a residual cap of water (H2O) ice. At the south pole, a small residual cap of CO2 ice remains in summer. Both residual ice caps overlie thick layered deposits of interbedded ice and dust. In the north, the layered deposits form a 3 km-high, 1,000 km-diameter plateau called
Planum Boreum Planum Boreum (Latin: "the northern plain") is the northern polar plain on Mars. It extends northward from roughly 80°N and is centered at . Surrounding the high polar plain is a flat and featureless lowland plain called Vastitas Borealis which ...
. A similar kilometers-thick plateau,
Planum Australe Planum Australe (Latin: "the southern plain") is the southern polar plain on Mars. It extends southward of roughly 75°S and is centered at . The geology of this region was to be explored by the failed NASA mission Mars Polar Lander, which lost co ...
, lies in the south. Both plana (the Latin plural of planum) are sometimes treated as synonymous with the polar ice caps, but the permanent ice (seen as the high albedo, white surfaces in images) forms only a relatively thin mantle on top of the layered deposits. The layered deposits probably represent alternating cycles of dust and ice deposition caused by climate changes related to variations in the planet's orbital parameters over time (see also
Milankovitch cycles Milankovitch cycles describe the collective effects of changes in the Earth's movements on its climate over thousands of years. The term was coined and named after Serbian geophysicist and astronomer Milutin Milanković. In the 1920s, he hypot ...
). The polar layered deposits are some of the youngest geologic units on Mars.


Geological history


Albedo features

No topography is visible on Mars from Earth. The bright areas and dark markings seen through a telescope are
albedo Albedo (; ) is the measure of the diffuse reflection of solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body that refl ...
features. The bright, red- ochre areas are locations where fine dust covers the surface. Bright areas (excluding the polar caps and clouds) include Hellas, Tharsis, and
Arabia Terra Arabia Terra is a large upland region in the north of Mars that lies mostly in the Arabia quadrangle, but a small part is in the Mare Acidalium quadrangle. It is densely cratered and heavily eroded. This battered topography indicates great age ...
. The dark gray markings represent areas that the wind has swept clean of dust, leaving behind the lower layer of dark, rocky material. Dark markings are most distinct in a broad belt from 0° to 40° S latitude. However, the most prominent dark marking, Syrtis Major Planum, is in the northern hemisphere. The classical albedo feature, Mare Acidalium ( Acidalia Planitia), is another prominent dark area in the northern hemisphere. A third type of area, intermediate in color and albedo, is also present and thought to represent regions containing a mixture of the material from the bright and dark areas.


Impact craters

Impact crater An impact crater is a circular depression in the surface of a solid astronomical object formed by the hypervelocity impact of a smaller object. In contrast to volcanic craters, which result from explosion or internal collapse, impact crater ...
s were first identified on Mars by the
Mariner 4 Mariner 4 (together with Mariner 3 known as Mariner-Mars 1964) was the fourth in a series of spacecraft intended for planetary exploration in a flyby mode. It was designed to conduct closeup scientific observations of Mars and to transmit the ...
spacecraft in 1965. Early observations showed that Martian craters were generally shallower and smoother than lunar craters, indicating that Mars has a more active history of erosion and deposition than the Moon. In other aspects, Martian craters resemble lunar craters. Both are products of hypervelocity impacts and show a progression of morphology types with increasing size. Martian craters below about 7 km in diameter are called simple craters; they are bowl-shaped with sharp raised rims and have depth/diameter ratios of about 1/5. Martian craters change from simple to more complex types at diameters of roughly 5 to 8 km. Complex craters have central peaks (or peak complexes), relatively flat floors, and terracing or slumping along the inner walls. Complex craters are shallower than simple craters in proportion to their widths, with depth/diameter ratios ranging from 1/5 at the simple-to-complex transition diameter (~7 km) to about 1/30 for a 100-km diameter crater. Another transition occurs at crater diameters of around 130 km as central peaks turn into concentric rings of hills to form
multi-ring basins A multi-ringed basin (also a multi-ring impact basin) is not a simple bowl-shaped crater, or a peak ring crater, but one containing multiple concentric topographic rings; a multi-ringed basin could be described as a massive impact crater, surrou ...
. Mars has the greatest diversity of impact crater types of any planet in the Solar System. This is partly because the presence of both rocky and volatile-rich layers in the subsurface produces a range of morphologies even among craters within the same size classes. Mars also has an atmosphere that plays a role in ejecta emplacement and subsequent erosion. Moreover, Mars has a rate of volcanic and tectonic activity low enough that ancient, eroded craters are still preserved, yet high enough to have resurfaced large areas, producing a diverse range of crater populations of widely differing ages. Over 42,000 impact craters greater than 5 km in diameter have been catalogued on Mars, and the number of smaller craters is probably innumerable. The density of craters on Mars is highest in the southern hemisphere, south of the dichotomy boundary. This is where most of the large craters and basins are located. Crater morphology provides information about the physical structure and composition of the surface and subsurface at the time of impact. For example, the size of central peaks in Martian craters is larger than comparable craters on Mercury or the Moon. In addition, the central peaks of many large craters on Mars have pit craters at their summits. Central pit craters are rare on the Moon but are very common on Mars and the icy satellites of the outer Solar System. Large central peaks and the abundance of pit craters probably indicate the presence of near-surface ice at the time of impact. Polewards of 30 degrees of latitude, the form of older impact craters is rounded out (" softened") by acceleration of soil creep by ground ice. The most notable difference between Martian craters and other craters in the Solar System is the presence of lobate (fluidized) ejecta blankets. Many craters at equatorial and mid-latitudes on Mars have this form of ejecta morphology, which is thought to arise when the impacting object melts ice in the subsurface. Liquid water in the ejected material forms a muddy slurry that flows along the surface, producing the characteristic lobe shapes. The crater Yuty is a good example of a
rampart crater Rampart craters are a specific type of impact crater which are accompanied by distinctive fluidized ejecta features found mainly on Mars. Only one example is known on Earth, the Nördlinger Ries impact structure in Germany. A rampart crater displ ...
, which is so called because of the rampart-like edge to its ejecta blanket. Image:Simple Crater PSP 009333 2025 RED.jpg,
HiRISE High Resolution Imaging Science Experiment is a camera on board the '' Mars Reconnaissance Orbiter'' which has been orbiting and studying Mars since 2006. The 65 kg (143 lb), US$40 million instrument was built under the direction ...
image of simple rayed crater on southeastern flank of Elysium Mons. Image:Complex Crater PIA05615.jpg,
THEMIS In Greek mythology and religion, Themis (; grc, Θέμις, Themis, justice, law, custom) is one of the twelve Titan children of Gaia and Uranus, and the second wife of Zeus. She is the goddess and personification of justice, divine order, fai ...
image of complex crater with fluidized ejecta. Note central peak with pit crater. Image:Mars rampart crater.jpg,
Viking orbiter The ''Viking'' program consisted of a pair of identical American space probes, ''Viking 1'' and ''Viking 2'', which landed on Mars in 1976. Each spacecraft was composed of two main parts: an orbiter designed to photograph the surface of Mars f ...
image of Yuty crater showing lobate ejecta. Image:Rampart V05808002.png,
THEMIS In Greek mythology and religion, Themis (; grc, Θέμις, Themis, justice, law, custom) is one of the twelve Titan children of Gaia and Uranus, and the second wife of Zeus. She is the goddess and personification of justice, divine order, fai ...
close-up view of ejecta from 17-km diameter crater at 21°S, 285°E. Note prominent rampart.
Martian craters are commonly classified by their ejecta. Craters with one ejecta layer are called single-layer ejecta (SLE) craters. Craters with two superposed ejecta blankets are called double-layer ejecta (DLE) craters, and craters with more than two ejecta layers are called multiple-layered ejecta (MLE) craters. These morphological differences are thought to reflect compositional differences (i.e. interlayered ice, rock, or water) in the subsurface at the time of impact. Martian craters show a large diversity of preservational states, from extremely fresh to old and eroded. Degraded and infilled impact craters record variations in
volcanic A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface. On Earth, volcanoes are most often found where tectonic plates a ...
, fluvial, and eolian activity over geologic time. Pedestal craters are craters with their ejecta sitting above the surrounding terrain to form raised platforms. They occur because the crater's ejecta forms a resistant layer so that the area nearest the crater erodes more slowly than the rest of the region. Some pedestals are hundreds of meters above the surrounding area, meaning that hundreds of meters of material were eroded away. Pedestal craters were first observed during the
Mariner A sailor, seaman, mariner, or seafarer is a person who works aboard a watercraft as part of its crew, and may work in any one of a number of different fields that are related to the operation and maintenance of a ship. The profession of the ...
9 mission in 1972.


Volcanism

Volcanic structures and landforms cover large portions of the Martian surface. The most conspicuous volcanoes on Mars are located in
Tharsis Tharsis () is a vast volcanic plateau centered near the equator in the western hemisphere of Mars. The region is home to the largest volcanoes in the Solar System, including the three enormous shield volcanoes Arsia Mons, Pavonis Mons, and Asc ...
and Elysium. Geologists think one of the reasons volcanoes on Mars were able to grow so large is that Mars has fewer tectonic boundaries in comparison to Earth. Lava from a stationary hot spot was able to accumulate at one location on the surface for many hundreds of millions of years. Scientists have never recorded an active volcano eruption on the surface of Mars. Searches for thermal signatures and surface changes within the last decade have not yielded evidence for active volcanism. On October 17, 2012, the ''
Curiosity rover ''Curiosity'' is a car-sized Mars rover designed to explore the Gale crater on Mars as part of NASA's Mars Science Laboratory (MSL) mission. ''Curiosity'' was launched from Cape Canaveral (CCAFS) on November 26, 2011, at 15:02:00 UTC and lan ...
'' on the planet Mars at " Rocknest" performed the first X-ray diffraction analysis of
Martian soil Martian soil is the fine regolith (a blanket of unconsolidated, loose, heterogeneous superficial deposits covering solid rock) found on the surface of Mars. Its properties can differ significantly from those of terrestrial soil, including its to ...
. The results from the rover's CheMin analyzer revealed the presence of several minerals, including
feldspar Feldspars are a group of rock-forming aluminium tectosilicate minerals, also containing other cations such as sodium, calcium, potassium, or barium. The most common members of the feldspar group are the ''plagioclase'' (sodium-calcium) felds ...
, pyroxenes and
olivine The mineral olivine () is a magnesium iron silicate with the chemical formula . It is a type of nesosilicate or orthosilicate. The primary component of the Earth's upper mantle, it is a common mineral in Earth's subsurface, but weathers quickl ...
, and suggested that the Martian soil in the sample was similar to the "weathered basaltic soils" of Hawaiian volcanoes. In July 2015, the same rover identified
tridymite Tridymite is a high-temperature polymorph of silica and usually occurs as minute tabular white or colorless pseudo-hexagonal crystals, or scales, in cavities in felsic volcanic rocks. Its chemical formula is Si O2. Tridymite was first describe ...
in a rock sample from Gale Crater, leading scientists to conclude that silicic volcanism might have played a much more prevalent role in the planet's volcanic history than previously thought.


Sedimentology

Flowing water appears to have been common on the surface of Mars at various points in its history, and especially on ancient Mars. Many of these flows carved the surface, forming valley networks and producing sediment. This sediment has been redeposited in a wide variety of wet environments, including in
alluvial fans An alluvial fan is an accumulation of sediments that fans outwards from a concentrated source of sediments, such as a narrow canyon emerging from an escarpment. They are characteristic of mountainous terrain in arid to semiarid climates, but a ...
, meandering channels, deltas,
lake A lake is an area filled with water, localized in a basin, surrounded by land, and distinct from any river or other outlet that serves to feed or drain the lake. Lakes lie on land and are not part of the ocean, although, like the much large ...
s, and perhaps even oceans.Carr, M. 2006. The Surface of Mars. Cambridge University Press. The processes of deposition and transportation are associated with gravity. Due to gravity, related differences in water fluxes and flow speeds, inferred from grain size distributions, Martian landscapes were created by different environmental conditions. Nevertheless, there are other ways of estimating the amount of water on ancient Mars (see:
Water on Mars Almost all water on Mars today exists as ice, though it also exists in small quantities as vapor in the atmosphere. What was thought to be low-volume liquid brines in shallow Martian soil, also called recurrent slope lineae, may be grains of ...
). Groundwater has been implicated in the cementation of aeolian sediments and the formation and transport of a wide variety of sedimentary minerals including clays, sulphates and hematite. When the surface has been dry, wind has been a major geomorphic agent. Wind driven sand bodies like megaripples and
dunes A dune is a landform composed of wind- or water-driven sand. It typically takes the form of a mound, ridge, or hill. An area with dunes is called a dune system or a dune complex. A large dune complex is called a dune field, while broad, fl ...
are extremely common on the modern Martian surface, and
Opportunity Opportunity may refer to: Places * Opportunity, Montana, an unincorporated community, United States * Opportunity, Nebraska, an unincorporated community, United States * Opportunity, Washington, a former census-designated place, United States * ...
has documented abundant aeolian sandstones on its traverse. Ventifacts, like
Jake Matijevic (rock) Jake Matijevic (or Jake M) is a pyramidal rock on the surface of Aeolis Palus, between Peace Vallis and Aeolis Mons ("Mount Sharp"), in Gale crater on the planet Mars. The approximate site coordinates are: . The rock was encountered by the ' ...
, are another aeolian landform on the Martian Surface. A wide variety of other sedimentological facies are also present locally on Mars, including
glacial deposits image:Geschiebemergel.JPG, Closeup of glacial till. Note that the larger grains (pebbles and gravel) in the till are completely surrounded by the matrix of finer material (silt and sand), and this characteristic, known as ''matrix support'', is d ...
, hot springs, dry mass movement deposits (especially
landslides Landslides, also known as landslips, are several forms of mass wasting that may include a wide range of ground movements, such as rockfalls, deep-seated slope failures, mudflows, and debris flows. Landslides occur in a variety of environments, ...
), and cryogenic and
periglacial Periglaciation (adjective: "periglacial", also referring to places at the edges of glacial areas) describes geomorphic processes that result from seasonal thawing of snow in areas of permafrost, the runoff from which refreezes in ice wedges and o ...
material, amongst many others. Evidence for ancient rivers, a lake, and dune fields have all been observed in the preserved strata by rovers at Meridiani Planum and Gale crater.


Common surface features


Groundwater on Mars

One group of researchers proposed that some of the layers on Mars were caused by groundwater rising to the surface in many places, especially inside of craters. According to the theory, groundwater with dissolved minerals came to the surface, in and later around craters, and helped to form layers by adding minerals (especially sulfate) and cementing sediments. This hypothesis is supported by a groundwater model and by sulfates discovered in a wide area. At first, by examining surface materials with
Opportunity Rover ''Opportunity'', also known as MER-B (Mars Exploration Rover – B) or MER-1, is a robotic rover that was active on Mars from 2004 until 2018. ''Opportunity'' was operational on Mars for sols (). Launched on July 7, 2003, as part of NASA's ...
, scientists discovered that groundwater had repeatedly risen and deposited sulfates. Later studies with instruments on board the
Mars Reconnaissance Orbiter ''Mars Reconnaissance Orbiter'' (MRO) is a spacecraft designed to study the geology and climate of Mars, provide reconnaissance of future landing sites, and relay data from surface missions back to Earth. It was launched on August 12, 2005, an ...
showed that the same kinds of materials exist in a large area that included Arabia.


Interesting geomorphological features


Avalanches

On February 19, 2008, images obtained by the
HiRISE High Resolution Imaging Science Experiment is a camera on board the '' Mars Reconnaissance Orbiter'' which has been orbiting and studying Mars since 2006. The 65 kg (143 lb), US$40 million instrument was built under the direction ...
camera on the
Mars Reconnaissance Orbiter ''Mars Reconnaissance Orbiter'' (MRO) is a spacecraft designed to study the geology and climate of Mars, provide reconnaissance of future landing sites, and relay data from surface missions back to Earth. It was launched on August 12, 2005, an ...
showed a spectacular avalanche, in which debris thought to be fine-grained ice, dust, and large blocks fell from a high cliff. Evidence of the avalanche included dust clouds rising from the cliff afterwards. Such geological events are theorized to be the cause of geologic patterns known as slope streaks. Image:Mars Avalanche 2.jpg, Image of the February 19, 2008 Mars avalanche captured by the Mars Reconnaissance Orbiter. Image:Mars Avalanche Hirise.jpg, Closer shot of the avalanche. Image:Mars Avalanche Dust Clouds.jpg, Dust clouds rise above the deep cliff. Image:Mars Avalanche with Scale.jpg, A photo with scale demonstrates the size of the avalanche.


Possible caves

NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the US federal government responsible for the civil List of government space agencies, space program ...
scientists studying pictures from the ''Odyssey'' spacecraft have spotted what might be seven
cave A cave or cavern is a natural void in the ground, specifically a space large enough for a human to enter. Caves often form by the weathering of rock and often extend deep underground. The word ''cave'' can refer to smaller openings such as sea ...
s on the flanks of the
Arsia Mons Arsia Mons is the southernmost of three volcanoes (collectively known as Tharsis Montes) on the Tharsis bulge near the equator of the planet Mars. To its north is Pavonis Mons, and north of that is Ascraeus Mons. The tallest volcano in the So ...
volcano A volcano is a rupture in the Crust (geology), crust of a Planet#Planetary-mass objects, planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and volcanic gas, gases to escape from a magma chamber below the surface. On Ear ...
on
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
. The pit entrances measure from wide and they are thought to be at least deep. See image below: the pits have been informally named (A) Dena, (B) Chloe, (C) Wendy, (D) Annie, (E) Abby (left) and Nikki, and (F) Jeanne. Dena's floor was observed and found to be 130 m deep. Further investigation suggested that these were not necessarily lava tube "skylights". Review of the images has resulted in yet more discoveries of deep pits. Recently, a global database (MG) of over 1,000 Martian cave candidates at Tharsis Montes has been developed by the
USGS Astrogeology Science Center The Astrogeology Science Center is the entity within the United States Geological Survey concerned with the study of planetary geology and planetary cartography. It is housed in the Shoemaker Building in Flagstaff, Arizona. The Center was establ ...
. In 2021, scientists are applying machine-learning algorithms to extend the MG database across the entire surface of Mars. It has been suggested that human explorers on Mars could use lava tubes as shelters. The caves may be the only natural structures offering protection from the micrometeoroids,
UV radiation Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation i ...
,
solar flare A solar flare is an intense localized eruption of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and other sol ...
s, and high energy particles that bombard the planet's surface. These features may enhance preservation of biosignatures over long periods of time and make caves an attractive astrobiology target in the search for evidence of life beyond Earth. File:Marshole.jpg, A cave on Mars ("Jeanne") as seen by the
Mars Reconnaissance Orbiter ''Mars Reconnaissance Orbiter'' (MRO) is a spacecraft designed to study the geology and climate of Mars, provide reconnaissance of future landing sites, and relay data from surface missions back to Earth. It was launched on August 12, 2005, an ...
. File:Mars; Arsia Mons cave entrance -MRO.jpg,
HiRISE High Resolution Imaging Science Experiment is a camera on board the '' Mars Reconnaissance Orbiter'' which has been orbiting and studying Mars since 2006. The 65 kg (143 lb), US$40 million instrument was built under the direction ...
closeup of Jeanne showing afternoon illumination of the east wall of the shaft. File:Mars caves from NASA orbiters.jpg, THEMIS image of cave entrances on Mars. File:Complete map of 1,000+ cave-entrances on Mars.png, Map of 1,000+ possible cave-entrances at Tharsis Montes


Inverted relief

Some areas of Mars show inverted relief, where features that were once depressions, like streams, are now above the surface. It is believed that materials like large rocks were deposited in low-lying areas. Later, wind erosion removed much of the surface layers, but left behind the more resistant deposits. Other ways of making inverted relief might be lava flowing down a stream bed or materials being cemented by minerals dissolved in water. On Earth, materials cemented by silica are highly resistant to all kinds of erosional forces. Examples of inverted channels on Earth are found in the Cedar Mountain Formation near Green River,
Utah Utah ( , ) is a state in the Mountain West subregion of the Western United States. Utah is a landlocked U.S. state bordered to its east by Colorado, to its northeast by Wyoming, to its north by Idaho, to its south by Arizona, and to it ...
. Inverted relief in the shape of streams are further evidence of water flowing on the Martian surface in past times. Inverted relief in the form of stream channels suggest that the climate was different—much wetter—when the inverted channels were formed. In an article published in January 2010, a large group of scientists endorsed the idea of searching for life in Miyamoto Crater because of inverted stream channels and minerals that indicated the past presence of water. Images of other examples of inverted terrain are shown below from various parts of Mars. Image:Inverted Streams in Juventae Chasma.jpg, Inverted Streams near Juventae Chasma, as seen by
Mars Global Surveyor ''Mars Global Surveyor'' (MGS) was an American robotic space probe developed by NASA's Jet Propulsion Laboratory and launched November 1996. MGS was a global mapping mission that examined the entire planet, from the ionosphere down through t ...
. These streams begin at the top of a ridge then run together. Image:Inverted Channel 012435.jpg, Inverted Channel with many branches in Syrtis Major quadrangle. Image:Antoniadi Crater Stream Channels.JPG, Inverted Stream Channels in Antoniadi Crater, as seen by
HiRISE High Resolution Imaging Science Experiment is a camera on board the '' Mars Reconnaissance Orbiter'' which has been orbiting and studying Mars since 2006. The 65 kg (143 lb), US$40 million instrument was built under the direction ...
. Image in Syrtis Major quadrangle. Image:Miyamoto Crater.JPG, Inverted Channel in Miyamoto Crater, as seen by
HiRISE High Resolution Imaging Science Experiment is a camera on board the '' Mars Reconnaissance Orbiter'' which has been orbiting and studying Mars since 2006. The 65 kg (143 lb), US$40 million instrument was built under the direction ...
. Image is located in
Margaritifer Sinus quadrangle The Margaritifer Sinus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Margaritifer Sinus quadrangle is also referred to as MC-19 (Mars Chart-19) ...
. The scale bar is 500 meters long.


See also

* Areography (geography of Mars) *
Carbonates on Mars Head (vessel) Evidence for carbonates on Mars was first discovered in 2008. Previously, most remote sensing instruments such as OMEGA and THEMIS—sensitive to infrared emissivity spectral features of carbonates—had not suggested the presence ...
* * Chloride-bearing deposits on Mars *
Composition of Mars The composition of Mars covers the branch of the geology of Mars that describes the make-up of the planet Mars. Elemental composition Mars is differentiated, which—for a terrestrial planet—implies that it has a central core made up of me ...
* Elysium Planitia *
Fretted terrain Fretted terrain is a type of surface feature common to certain areas of Mars and was discovered in Mariner 9 images. It lies between two different types of terrain. The surface of Mars can be divided into two parts: low, young, uncratered plains ...
*
Glaciers on Mars Glaciers, loosely defined as patches of currently or recently flowing ice, are thought to be present across large but restricted areas of the modern Martian surface, and are inferred to have been more widely distributed at times in the past."The S ...
*
Groundwater on Mars During past ages, there was rain and snow on Mars; especially in the Noachian and early Hesperian epochs. Some moisture entered the ground and formed aquifers. That is, the water went into the ground, seeped down until it reached a formation tha ...
* Hecates Tholus * Lakes on Mars *
Life on Mars The possibility of life on Mars is a subject of interest in astrobiology due to the planet's proximity and similarities to Earth. To date, no proof of past or present life has been found on Mars. Cumulative evidence suggests that during the ...
*
List of quadrangles on Mars The surface of Mars has been divided into thirty cartographic quadrangles by the United States Geological Survey. Each quadrangle is a region covering a specified range of latitudes and longitudes on the Martian surface. The quadrangles are name ...
*
List of rocks on Mars This is an alphabetical list of named rocks (and meteorites) found on Mars, by mission. This list is a sampling of rocks viewed, and is not an exhaustive listing. A more complete listing may be found on the various NASA mission web sites. This lis ...
* Magnetic field of Mars * Mars Geyser Hopper * Martian craters *
Martian dichotomy The most conspicuous feature of Mars is a sharp contrast, known as the Martian dichotomy, between the Southern and the Northern hemispheres. The two hemispheres' geography differ in elevation by 1 to 3 km. The average thickness of the Marti ...
* Martian geyser *
Martian gullies Martian gullies are small, incised networks of narrow channels and their associated downslope sediment deposits, found on the planet of Mars. They are named for their resemblance to terrestrial gullies. First discovered on images from Mars Global ...
*
Martian soil Martian soil is the fine regolith (a blanket of unconsolidated, loose, heterogeneous superficial deposits covering solid rock) found on the surface of Mars. Its properties can differ significantly from those of terrestrial soil, including its to ...
* Mineralogy of Mars *
Ore resources on Mars Mars may contain ores that would be very useful to potential colonists. The abundance of volcanic features together with widespread cratering are strong evidence for a variety of ores. While nothing may be found on Mars that would justify the hi ...
* Scientific information from the Mars Exploration Rover mission * Seasonal flows on warm Martian slopes * Vallis *
Water on Mars Almost all water on Mars today exists as ice, though it also exists in small quantities as vapor in the atmosphere. What was thought to be low-volume liquid brines in shallow Martian soil, also called recurrent slope lineae, may be grains of ...


References


Bibliography

* *


External links


Mars - Geologic Map
(
USGS The United States Geological Survey (USGS), formerly simply known as the Geological Survey, is a scientific agency of the United States government. The scientists of the USGS study the landscape of the United States, its natural resources, a ...
, 2014)
original
/
crop A crop is a plant that can be grown and harvested extensively for profit or subsistence. When the plants of the same kind are cultivated at one place on a large scale, it is called a crop. Most crops are cultivated in agriculture or hydropon ...
/ full
video (00:56)
.

(
USGS The United States Geological Survey (USGS), formerly simply known as the Geological Survey, is a scientific agency of the United States government. The scientists of the USGS study the landscape of the United States, its natural resources, a ...
, 1978).
Animated flights over Mars at 100 meter altitude


* ttps://trek.nasa.gov/mars Presents good images, distances, and elevations/NASA {{Authority control Mars
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...