HOME

TheInfoList



OR:

Functional analysis is a branch of
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (m ...
, the core of which is formed by the study of
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
s endowed with some kind of limit-related structure (e.g.
inner product In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often ...
, norm,
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
, etc.) and the
linear function In mathematics, the term linear function refers to two distinct but related notions: * In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For dist ...
s defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and
integral equations In mathematics, integral equations are equations in which an unknown function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form: f(x_1,x_2,x_3,...,x_n ; u(x_1,x_2,x_3,...,x_n) ...
. The usage of the word '' functional'' as a noun goes back to the calculus of variations, implying a function whose argument is a function. The term was first used in
Hadamard Jacques Salomon Hadamard (; 8 December 1865 – 17 October 1963) was a French mathematician who made major contributions in number theory, complex analysis, differential geometry and partial differential equations. Biography The son of a teac ...
's 1910 book on that subject. However, the general concept of a functional had previously been introduced in 1887 by the Italian mathematician and physicist
Vito Volterra Vito Volterra (, ; 3 May 1860 – 11 October 1940) was an Italian mathematician and physicist, known for his contributions to mathematical biology and integral equations, being one of the founders of functional analysis. Biography Born in An ...
. The theory of nonlinear functionals was continued by students of Hadamard, in particular Fréchet and Lévy. Hadamard also founded the modern school of linear functional analysis further developed by Riesz and the
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
of Polish mathematicians around
Stefan Banach Stefan Banach ( ; 30 March 1892 – 31 August 1945) was a Polish mathematician who is generally considered one of the 20th century's most important and influential mathematicians. He was the founder of modern functional analysis, and an origina ...
. In modern introductory texts on functional analysis, the subject is seen as the study of vector spaces endowed with a topology, in particular infinite-dimensional spaces. In contrast,
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices ...
deals mostly with finite-dimensional spaces, and does not use topology. An important part of functional analysis is the extension of the theory of measure, integration, and
probability Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speakin ...
to infinite dimensional spaces, also known as infinite dimensional analysis.


Normed vector spaces

The basic and historically first class of spaces studied in functional analysis are complete
normed vector space In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length ...
s over the
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
or
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s. Such spaces are called Banach spaces. An important example is a Hilbert space, where the norm arises from an inner product. These spaces are of fundamental importance in many areas, including the
mathematical formulation of quantum mechanics The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which ...
,
machine learning Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine ...
, partial differential equations, and Fourier analysis. More generally, functional analysis includes the study of
Fréchet space In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces ( normed vector spaces that are complete with respect to th ...
s and other
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
s not endowed with a norm. An important object of study in functional analysis are the continuous
linear operators In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pre ...
defined on Banach and Hilbert spaces. These lead naturally to the definition of C*-algebras and other
operator algebra In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings. The results obtained in the study of ...
s.


Hilbert spaces

Hilbert spaces can be completely classified: there is a unique Hilbert space up to isomorphism for every cardinality of the orthonormal basis. Finite-dimensional Hilbert spaces are fully understood in
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices ...
, and infinite-dimensional separable Hilbert spaces are isomorphic to \ell^(\aleph_0)\,. Separability being important for applications, functional analysis of Hilbert spaces consequently mostly deals with this space. One of the open problems in functional analysis is to prove that every bounded linear operator on a Hilbert space has a proper invariant subspace. Many special cases of this
invariant subspace problem In the field of mathematics known as functional analysis, the invariant subspace problem is a partially unresolved problem asking whether every bounded operator on a complex Banach space sends some non-trivial closed subspace to itself. Many vari ...
have already been proven.


Banach spaces

General Banach spaces are more complicated than Hilbert spaces, and cannot be classified in such a simple manner as those. In particular, many Banach spaces lack a notion analogous to an orthonormal basis. Examples of Banach spaces are L^p-spaces for any real number Given also a measure \mu on set then sometimes also denoted L^p(X,\mu) or has as its vectors equivalence classes ,f\,/math> of measurable functions whose absolute value's p-th power has finite integral; that is, functions f for which one has :\int_\left, f(x)\^p\,d\mu(x) < +\infty. If \mu is the
counting measure In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinity ...
, then the integral may be replaced by a sum. That is, we require :\sum_\left, f(x)\^p<+\infty . Then it is not necessary to deal with equivalence classes, and the space is denoted written more simply \ell^p in the case when X is the set of non-negative
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
s. In Banach spaces, a large part of the study involves the dual space: the space of all continuous linear maps from the space into its underlying field, so-called functionals. A Banach space can be canonically identified with a subspace of its bidual, which is the dual of its dual space. The corresponding map is an
isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' me ...
but in general not onto. A general Banach space and its bidual need not even be isometrically isomorphic in any way, contrary to the finite-dimensional situation. This is explained in the dual space article. Also, the notion of
derivative In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
can be extended to arbitrary functions between Banach spaces. See, for instance, the
Fréchet derivative In mathematics, the Fréchet derivative is a derivative defined on normed spaces. Named after Maurice Fréchet, it is commonly used to generalize the derivative of a real-valued function of a single real variable to the case of a vector-valued ...
article.


Linear functional analysis


Major and foundational results

There are four major theorems which are sometimes called the four pillars of functional analysis: the
Hahn–Banach theorem The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear f ...
, the open mapping theorem, the
closed graph theorem In mathematics, the closed graph theorem may refer to one of several basic results characterizing continuous functions in terms of their graphs. Each gives conditions when functions with closed graphs are necessarily continuous. Graphs and m ...
and the uniform boundedness principle, also known as the Banach–Steinhaus theorem. Important results of functional analysis include:


Uniform boundedness principle

The uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the
Hahn–Banach theorem The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear f ...
and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of
continuous linear operator In functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces. An operator between two normed spaces is a bounded linear op ...
s (and thus bounded operators) whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm. The theorem was first published in 1927 by
Stefan Banach Stefan Banach ( ; 30 March 1892 – 31 August 1945) was a Polish mathematician who is generally considered one of the 20th century's most important and influential mathematicians. He was the founder of modern functional analysis, and an origina ...
and Hugo Steinhaus but it was also proven independently by Hans Hahn.
Theorem (Uniform Boundedness Principle). Let X be a Banach space and Y be a
normed vector space In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length ...
. Suppose that F is a collection of continuous linear operators from X to Y. If for all x in X one has :\sup\nolimits_ \, T(x)\, _Y < \infty, then :\sup\nolimits_ \, T\, _ < \infty.


Spectral theorem

There are many theorems known as the
spectral theorem In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful ...
, but one in particular has many applications in functional analysis.
Spectral theorem. Let A be a bounded self-adjoint operator on a Hilbert space H. Then there is a measure space (X,\Sigma,\mu) and a real-valued
essentially bounded Essence ( la, essentia) is a polysemic term, used in philosophy and theology as a designation for the property or set of properties that make an entity or substance what it fundamentally is, and which it has by necessity, and without which it ...
measurable function f on X and a unitary operator U:H\to L^2_\mu(X) such that : U^* T U = A \; where ''T'' is the multiplication operator: : \varphix) = f(x) \varphi(x). \; and \, T\, = \, f\, _\infty.
This is the beginning of the vast research area of functional analysis called
operator theory In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators ...
; see also the spectral measure. There is also an analogous spectral theorem for bounded
normal operator In mathematics, especially functional analysis, a normal operator on a complex Hilbert space ''H'' is a continuous linear operator ''N'' : ''H'' → ''H'' that commutes with its hermitian adjoint ''N*'', that is: ''NN*'' = ''N*N''. Normal opera ...
s on Hilbert spaces. The only difference in the conclusion is that now f may be complex-valued.


Hahn–Banach theorem

The
Hahn–Banach theorem The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear f ...
is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a subspace of some
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
to the whole space, and it also shows that there are "enough" continuous linear functionals defined on every
normed vector space In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length ...
to make the study of the dual space "interesting".
Hahn–Banach theorem: If p:V\to\mathbb is a
sublinear function In linear algebra, a sublinear function (or functional as is more often used in functional analysis), also called a quasi-seminorm or a Banach functional, on a vector space X is a real-valued function with only some of the properties of a seminorm. ...
, and \varphi:U\to\mathbb is a
linear functional In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear map from a vector space to its field of scalars (often, the real numbers or the complex numbers). If is a vector space over a field , the ...
on a linear subspace U\subseteq V which is dominated by p on U; that is, :\varphi(x) \leq p(x)\qquad\forall x \in U then there exists a linear extension \psi:V\to\mathbb of \varphi to the whole space V which is dominated by p on V; that is, there exists a linear functional \psi such that :\psi(x)=\varphi(x)\qquad\forall x\in U, :\psi(x) \le p(x)\qquad\forall x\in V.


Open mapping theorem

The open mapping theorem, also known as the Banach–Schauder theorem (named after
Stefan Banach Stefan Banach ( ; 30 March 1892 – 31 August 1945) was a Polish mathematician who is generally considered one of the 20th century's most important and influential mathematicians. He was the founder of modern functional analysis, and an origina ...
and
Juliusz Schauder Juliusz Paweł Schauder (; 21 September 1899, Lwów, Austria-Hungary – September 1943, Lwów, Occupied Poland) was a Polish mathematician of Jewish origin, known for his work in functional analysis, partial differential equations and m ...
), is a fundamental result which states that if a
continuous linear operator In functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces. An operator between two normed spaces is a bounded linear op ...
between Banach spaces is surjective then it is an open map. More precisely,: : Open mapping theorem. If X and Y are Banach spaces and A:X\to Y is a surjective continuous linear operator, then A is an open map (that is, if U is an open set in X, then A(U) is open in Y). The proof uses the Baire category theorem, and completeness of both X and Y is essential to the theorem. The statement of the theorem is no longer true if either space is just assumed to be a normed space, but is true if X and Y are taken to be
Fréchet space In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces ( normed vector spaces that are complete with respect to th ...
s.


Closed graph theorem

The closed graph theorem states the following: If X is a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
and Y is a compact
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the m ...
, then the graph of a linear map T from X to Y is closed if and only if T is continuous.


Other topics


Foundations of mathematics considerations

Most spaces considered in functional analysis have infinite dimension. To show the existence of a
vector space basis In mathematics, a set of vectors in a vector space is called a basis if every element of may be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as components ...
for such spaces may require Zorn's lemma. However, a somewhat different concept, Schauder basis, is usually more relevant in functional analysis. Many very important theorems require the
Hahn–Banach theorem The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear f ...
, usually proved using the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
, although the strictly weaker Boolean prime ideal theorem suffices. The Baire category theorem, needed to prove many important theorems, also requires a form of axiom of choice.


Points of view

Functional analysis in its includes the following tendencies: *''Abstract analysis''. An approach to analysis based on
topological group In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two st ...
s,
topological ring In mathematics, a topological ring is a ring R that is also a topological space such that both the addition and the multiplication are continuous as maps: R \times R \to R where R \times R carries the product topology. That means R is an additive ...
s, and
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
s. *''Geometry of Banach spaces'' contains many topics. One is
combinatorial Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ap ...
approach connected with
Jean Bourgain Jean, Baron Bourgain (; – ) was a Belgian mathematician. He was awarded the Fields Medal in 1994 in recognition of his work on several core topics of mathematical analysis such as the geometry of Banach spaces, harmonic analysis, ergodic the ...
; another is a characterization of Banach spaces in which various forms of the law of large numbers hold. *''
Noncommutative geometry Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of ''spaces'' that are locally presented by noncommutative algebras of functions (possibly in some g ...
''. Developed by
Alain Connes Alain Connes (; born 1 April 1947) is a French mathematician, and a theoretical physicist, known for his contributions to the study of operator algebras and noncommutative geometry. He is a professor at the , , Ohio State University and Vand ...
, partly building on earlier notions, such as George Mackey's approach to ergodic theory. *''Connection with
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistr ...
''. Either narrowly defined as in
mathematical physics Mathematical physics refers to the development of mathematical methods for application to problems in physics. The '' Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the developme ...
, or broadly interpreted by, for example,
Israel Gelfand Israel Moiseevich Gelfand, also written Israïl Moyseyovich Gel'fand, or Izrail M. Gelfand ( yi, ישראל געלפֿאַנד, russian: Изра́иль Моисе́евич Гельфа́нд, uk, Ізраїль Мойсейович Гел� ...
, to include most types of
representation theory Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
.


See also

* List of functional analysis topics * Spectral theory


References


Further reading

* Aliprantis, C.D., Border, K.C.: ''Infinite Dimensional Analysis: A Hitchhiker's Guide'', 3rd ed., Springer 2007, . Online (by subscription) * Bachman, G., Narici, L.: ''Functional analysis'', Academic Press, 1966. (reprint Dover Publications) * Banach S.br>''Theory of Linear Operations''
Volume 38, North-Holland Mathematical Library, 1987, * Brezis, H.: ''Analyse Fonctionnelle'', Dunod or * Conway, J. B.: ''A Course in Functional Analysis'', 2nd edition, Springer-Verlag, 1994, * Dunford, N. and Schwartz, J.T.: ''Linear Operators, General Theory, John Wiley & Sons'', and other 3 volumes, includes visualization charts * Edwards, R. E.: ''Functional Analysis, Theory and Applications'', Hold, Rinehart and Winston, 1965. * Eidelman, Yuli, Vitali Milman, and Antonis Tsolomitis: ''Functional Analysis: An Introduction'', American Mathematical Society, 2004. * Friedman, A.: ''Foundations of Modern Analysis'', Dover Publications, Paperback Edition, July 21, 2010 * Giles, J.R.: ''Introduction to the Analysis of Normed Linear Spaces'', Cambridge University Press, 2000 * Hirsch F., Lacombe G. - "Elements of Functional Analysis", Springer 1999. * Hutson, V., Pym, J.S., Cloud M.J.: ''Applications of Functional Analysis and Operator Theory'', 2nd edition, Elsevier Science, 2005, * Kantorovitz, S.,''Introduction to Modern Analysis'', Oxford University Press, 2003,2nd ed.2006. * Kolmogorov, A.N and Fomin, S.V.: ''Elements of the Theory of Functions and Functional Analysis'', Dover Publications, 1999 * Kreyszig, E.: ''Introductory Functional Analysis with Applications'', Wiley, 1989. * Lax, P.: ''Functional Analysis'', Wiley-Interscience, 2002, * Lebedev, L.P. and Vorovich, I.I.: ''Functional Analysis in Mechanics'', Springer-Verlag, 2002 * Michel, Anthony N. and Charles J. Herget: ''Applied Algebra and Functional Analysis'', Dover, 1993. * Pietsch, Albrecht: ''History of Banach spaces and linear operators'', Birkhäuser Boston Inc., 2007, * Reed, M., Simon, B.: "Functional Analysis", Academic Press 1980. * Riesz, F. and Sz.-Nagy, B.: ''Functional Analysis'', Dover Publications, 1990 * Rudin, W.: ''Functional Analysis'', McGraw-Hill Science, 1991 * Saxe, Karen: ''Beginning Functional Analysis'', Springer, 2001 * Schechter, M.: ''Principles of Functional Analysis'', AMS, 2nd edition, 2001 * Shilov, Georgi E.: ''Elementary Functional Analysis'', Dover, 1996. * Sobolev, S.L.: ''Applications of Functional Analysis in Mathematical Physics'', AMS, 1963 * Vogt, D., Meise, R.: ''Introduction to Functional Analysis'', Oxford University Press, 1997. * Yosida, K.: ''Functional Analysis'', Springer-Verlag, 6th edition, 1980


External links

*
Topics in Real and Functional Analysis
by Gerald Teschl, University of Vienna.
Lecture Notes on Functional Analysis
by Yevgeny Vilensky, New York University.
Lecture videos on functional analysis
b
Greg Morrow
from
University of Colorado Colorado Springs The University of Colorado Colorado Springs (UCCS) is a public research university in Colorado Springs, Colorado. It is one of four campuses that make up the University of Colorado system. As of Fall 2017, UCCS had over 12,400 undergraduate ...
{{Authority control