HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a free abelian group is an
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
with a basis. Being an abelian group means that it is a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
with an addition
operation Operation or Operations may refer to: Arts, entertainment and media * ''Operation'' (game), a battery-operated board game that challenges dexterity * Operation (music), a term used in musical set theory * ''Operations'' (magazine), Multi-Man ...
that is
associative In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
, commutative, and invertible. A basis, also called an integral basis, is a
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
such that every element of the group can be uniquely expressed as an
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis. Free abelian groups have properties which make them similar to
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
s, and may equivalently be called free the
free module In mathematics, a free module is a module that has a basis – that is, a generating set consisting of linearly independent elements. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a fiel ...
s over the integers. Lattice theory studies free abelian subgroups of real vector spaces. In
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify ...
, free abelian groups are used to define chain groups, and in
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
they are used to define
divisors In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
. The elements of a free abelian group with basis B may be described in several equivalent ways. These include formal sums which are expressions of the form \sum a_i b_i where each a_i is a nonzero integer, each b_i is a distinct basis element, and the sum has finitely many terms. Alternatively, the elements of a free abelian group may be thought of as signed multisets containing finitely many elements with the multiplicity of an element in the multiset equal to its coefficient in the formal sum. Another way to represent an element of a free abelian group is as a function from B to the integers with finitely many nonzero values; for this functional representation, the group operation is the
pointwise In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some function f. An important class of pointwise concepts are the ''pointwise operations'', that is, operations defined ...
addition of functions. Every set B has a free abelian group with B as its basis. This group is unique in the sense that every two free abelian groups with the same basis are
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
. Instead of constructing it by describing its individual elements, a free abelian group with basis B may be constructed as a
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a mor ...
of copies of the additive group of the integers, with one copy per member Alternatively, the free abelian group with basis B may be described by a presentation with the elements of B as its generators and with the
commutator In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, ...
s of pairs of members as its relators. The rank of a free abelian group is the
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
of a basis; every two bases for the same group give the same rank, and every two free abelian groups with the same rank are isomorphic. Every subgroup of a free abelian group is itself free abelian; this fact allows a general abelian group to be understood as a quotient of a free abelian group by "relations", or as a cokernel of an
injective In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositi ...
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
between free abelian groups. The only free abelian groups that are free groups are the
trivial group In mathematics, a trivial group or zero group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usuall ...
and the infinite cyclic group.


Definition and examples

A free abelian group is an
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
that has a basis. Here, being an abelian group means that it is described by a set S of its elements and a
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary op ...
conventionally denoted as an additive group by the + symbol (although it need not be the usual addition of numbers) that obey the following properties: *The operation + is commutative and
associative In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
, meaning for all elements x+y=y+x and Therefore, when combining two or more elements of S using this operation, the ordering and grouping of the elements does not affect the result. *S contains an identity element (conventionally denoted with the property that, for every *Every element x in S has an inverse element such that A basis is a subset B of the elements of S with the property that every element of S may be formed in a unique way by choosing finitely many basis elements b_i choosing a nonzero integer k_i for each of the chosen basis elements, and adding together k_i copies of the basis elements b_i for which k_i is positive, and -k_i copies of -b_i for each basis element for which k_i is negative. As a special case, the identity element can always be formed in this way as the combination of zero basis elements, according to the usual convention for an empty sum, and it must not be possible to find any other combination that represents the identity.Some sources define free abelian groups by the condition that the only representation of the identity is the empty sum, rather than treating it as a special case of unique representation of all group elements; see, e.g., . The under the usual addition operation, form a free abelian group with the The integers are commutative and associative, with 0 as the additive identity and with each integer having an
additive inverse In mathematics, the additive inverse of a number is the number that, when added to , yields zero. This number is also known as the opposite (number), sign change, and negation. For a real number, it reverses its sign: the additive inverse (op ...
, its negation. Each non-negative x is the sum of x copies and each negative integer x is the sum of -x copies so the basis property is also satisfied. An example where the group operation is different from the usual addition of numbers is given by the positive
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
s which form a free abelian group with the usual
multiplication Multiplication (often denoted by the Multiplication sign, cross symbol , by the mid-line #Notation and terminology, dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four Elementary arithmetic, elementary Op ...
operation on numbers and with the
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s as their basis. Multiplication is commutative and associative, with the number 1 as its identity and with 1/x as the inverse element for each positive rational The fact that the prime numbers forms a basis for multiplication of these numbers follows from the
fundamental theorem of arithmetic In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the ord ...
, according to which every positive integer can be factorized uniquely into the product of finitely many primes or their inverses. If q=a/b is a positive rational number expressed in simplest terms, then q can be expressed as a finite combination of the primes appearing in the factorizations of a The number of copies of each prime to use in this combination is its exponent in the factorization of a, or the negation of its exponent in the factorization The
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exampl ...
s of a single with integer coefficients, form a free abelian group under polynomial addition, with the powers of x as a basis. As an abstract group, this is the same as (an
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
group to) the multiplicative group of positive rational numbers. One way to map these two groups to each other, showing that they are isomorphic, is to reinterpret the exponent of the prime number in the multiplicative group of the rationals as instead giving the coefficient of x^ in the corresponding polynomial, or vice versa. For instance the rational number 5/27 has exponents of 0, -3, 1 for the first three prime numbers 2, 3, 5 and would correspond in this way to the polynomial -3x+x^2 having the same coefficients 0, -3, 1 for its constant, linear, and quadratic terms. Because these mappings merely reinterpret the same numbers, they define a
bijection In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
between the elements of the two groups. And because the group operation of multiplying positive rationals acts additively on the exponents of the prime numbers, in the same way that the group operation of adding polynomials acts on the coefficients of the polynomials, these maps preserve the group structure; they are
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
s. A bijective homomorphism is called an isomorphism, and its existence demonstrates that these two groups have the same properties. Although the representation of each group element in terms of a given basis is unique, a free abelian group has generally more than one basis, and different bases will generally result in different representations of its elements. For example, if one replaces any element of a basis by its inverse, one gets another basis. As a more elaborated example, the two-dimensional integer lattice consisting of the points in the plane with integer
Cartesian coordinates A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
, forms a free abelian group under
vector addition In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Vectors can be added to other vectors a ...
with the basis For this basis, the element (4,3) can be written where 'multiplication' is defined so that, for instance, There is no other way to write (4,3) in the same basis. However, with a different basis such as it can be written as Generalizing this example, every
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an orna ...
forms a finitely-generated free abelian group. The integer lattice \Z^d has a natural basis consisting of the positive integer
unit vector In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in \hat (pronounced "v-hat"). The term ''direction v ...
s, but it has many other bases as well: if M is a d\times d integer
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** '' The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
with then the rows of M form a basis, and
conversely In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication ''P'' → ''Q'', the converse is ''Q'' → ''P''. For the categorical proposit ...
every basis of the integer lattice has this form. For more on the two-dimensional case, see
fundamental pair of periods In mathematics, a fundamental pair of periods is an ordered pair of complex numbers that define a lattice in the complex plane. This type of lattice is the underlying object with which elliptic functions and modular forms are defined. Definition ...
.


Constructions

Every set can be the basis of a free abelian group, which is unique up to group isomorphisms. The free abelian group for a given basis set can be constructed in several different but equivalent ways: as a direct sum of copies of the integers, as a family of integer-valued functions, as a signed multiset, or by a
presentation of a group In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and ...
.


Products and sums

The
direct product of groups In mathematics, specifically in group theory, the direct product is an operation that takes two groups and and constructs a new group, usually denoted . This operation is the group-theoretic analogue of the Cartesian product of sets and is one ...
consists of tuples of an element from each group in the product, with componentwise addition. The direct product of two free abelian groups is itself free abelian, with basis the
disjoint union In mathematics, a disjoint union (or discriminated union) of a family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injection of each A_i into A, such that the images of these injections form a partition of A ( ...
of the bases of the two groups. More generally the direct product of any finite number of free abelian groups is free abelian. The integer lattice, for instance, is isomorphic to the direct product of d copies of the integer The trivial group \ is also considered to be free abelian, with basis the
empty set In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in othe ...
. It may be interpreted as an
empty product In mathematics, an empty product, or nullary product or vacuous product, is the result of multiplying no factors. It is by convention equal to the multiplicative identity (assuming there is an identity for the multiplication operation in question ...
, the direct product of zero copies For infinite families of free abelian groups, the direct product is not necessarily free abelian. For instance the
Baer–Specker group In mathematics, in the field of group theory, the Baer–Specker group, or Specker group, named after Reinhold Baer and Ernst Specker, is an example of an infinite Abelian group which is a building block in the structure theory of such groups. Def ...
an
uncountable In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal num ...
group formed as the direct product of countably many copies was shown in 1937 by
Reinhold Baer Reinhold Baer (22 July 1902 – 22 October 1979) was a German mathematician, known for his work in algebra. He introduced injective modules in 1940. He is the eponym of Baer rings and Baer groups. Biography Baer studied mechanical engineerin ...
to not be free abelian, although
Ernst Specker Ernst Paul Specker (11 February 1920, Zurich – 10 December 2011, Zurich) was a Swiss mathematician. Much of his most influential work was on Quine's New Foundations, a set theory with a universal set, but he is most famous for the Kochen ...
proved in 1950 that all of its countable subgroups are free abelian. Instead, to obtain a free abelian group from an infinite family of groups, the
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a mor ...
rather than the direct product should be used. The direct sum and direct product are the same when they are applied to finitely many groups, but differ on infinite families of groups. In the direct sum, the elements are again tuples of elements from each group, but with the restriction that all but finitely many of these elements are the identity for their group. The direct sum of infinitely many free abelian groups remains free abelian. It has a basis consisting of tuples in which all but one element is the identity, with the remaining element part of a basis for its group. Every free abelian group may be described as a direct sum of copies with one copy for each member of its basis. This construction allows any set B to become the basis of a free abelian group.


Integer functions and formal sums

Given a one can define a group \mathbb^ whose elements are functions from B to the integers, where the parenthesis in the superscript indicates that only the functions with finitely many nonzero values are included. If f(x) and g(x) are two such functions, then f+g is the function whose values are sums of the values in f that is, This
pointwise In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some function f. An important class of pointwise concepts are the ''pointwise operations'', that is, operations defined ...
addition operation gives \mathbb^ the structure of an abelian group. Each element x from the given set B corresponds to a member the function e_x for which e_x(x)=1 and for which e_x(y)=0 for Every function f in \mathbb^ is uniquely a linear combination of a finite number of basis elements: f=\sum_ f(x) e_x. Thus, these elements e_x form a basis and \mathbb^ is a free abelian group. In this way, every set B can be made into the basis of a free abelian group. The elements of \mathbb^ may also be written as formal sums, expressions in the form of a sum of finitely many terms, where each term is written as the product of a nonzero integer with a distinct member These expressions are considered equivalent when they have the same terms, regardless of the ordering of terms, and they may be added by forming the union of the terms, adding the integer coefficients to combine terms with the same basis element, and removing terms for which this combination produces a zero coefficient. They may also be interpreted as the signed multisets of finitely many elements


Presentation

A
presentation of a group In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and ...
is a set of elements that generate the group (meaning that all group elements can be expressed as products of finitely many generators), together with "relators", products of generators that give the identity element. The elements of a group defined in this way are
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a ...
es of sequences of generators and their inverses, under an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relatio ...
that allows inserting or removing any relator or generator-inverse pair as a contiguous subsequence. The free abelian group with basis B has a presentation in which the generators are the elements and the relators are the
commutator In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, ...
s of pairs of elements Here, the commutator of two elements x and y is the product setting this product to the identity causes xy to so that x and y commute. More generally, if all pairs of generators commute, then all pairs of products of generators also commute. Therefore, the group generated by this presentation is abelian, and the relators of the presentation form a minimal set of relators needed to ensure that it is abelian. When the set of generators is finite, the presentation of a free abelian group is also finite, because there are only finitely many different commutators to include in the presentation. This fact, together with the fact that every subgroup of a free abelian group is free abelian (
below Below may refer to: *Earth * Ground (disambiguation) *Soil *Floor * Bottom (disambiguation) *Less than *Temperatures below freezing *Hell or underworld People with the surname *Ernst von Below (1863–1955), German World War I general *Fred Below ...
) can be used to show that every finitely generated abelian group is finitely presented. For, if G is finitely generated by a it is a
quotient In arithmetic, a quotient (from lat, quotiens 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics, and is commonly referred to as the integer part of a ...
of the free abelian group over B by a free abelian subgroup, the subgroup generated by the relators of the presentation But since this subgroup is itself free abelian, it is also finitely generated, and its basis (together with the commutators forms a finite set of relators for a presentation


As a module

The
module Module, modular and modularity may refer to the concept of modularity. They may also refer to: Computing and engineering * Modular design, the engineering discipline of designing complex devices using separately designed sub-components * Modul ...
s over the integers are defined similarly to
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
s over the
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s or
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
s: they consist of systems of elements that can be added to each other, with an operation for
scalar multiplication In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector b ...
by integers that is compatible with this addition operation. Every abelian group may be considered as a module over the integers, with a scalar multiplication operation defined as follows: However, unlike vector spaces, not all abelian groups have a basis, hence the special name "free" for those that do. A
free module In mathematics, a free module is a module that has a basis – that is, a generating set consisting of linearly independent elements. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a fiel ...
is a module that can be represented as a direct sum over its base ring, so free abelian groups and free are equivalent concepts: each free abelian group is (with the multiplication operation above) a free and each free comes from a free abelian group in this way. As well as the direct sum, another way to combine free abelian groups is to use the
tensor product In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otime ...
of The tensor product of two free abelian groups is always free abelian, with a basis that is the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\t ...
of the bases for the two groups in the product. Many important properties of free abelian groups may be generalized to free modules over a
principal ideal domain In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principa ...
. For instance,
submodule In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the mo ...
s of free modules over principal ideal domains are free, a fact that writes allows for "automatic generalization" of
homological Homology may refer to: Sciences Biology *Homology (biology), any characteristic of biological organisms that is derived from a common ancestor *Sequence homology, biological homology between DNA, RNA, or protein sequences *Homologous chromo ...
machinery to these modules. Additionally, the theorem that every projective is free generalizes in the same way.


Properties


Universal property

A free abelian group F with basis B has the following
universal property In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently fr ...
: for every function f from B to an abelian group A, there exists a unique
group homomorphism In mathematics, given two groups, (''G'', ∗) and (''H'', ·), a group homomorphism from (''G'', ∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) w ...
from F to A which extends f. Here, a group homomorphism is a mapping from one group to the other that is consistent with the group product law: performing a product before or after the mapping produces the same result. By a general property of universal properties, this shows that "the" abelian group of base B is unique
up to Two mathematical objects ''a'' and ''b'' are called equal up to an equivalence relation ''R'' * if ''a'' and ''b'' are related by ''R'', that is, * if ''aRb'' holds, that is, * if the equivalence classes of ''a'' and ''b'' with respect to ''R'' ...
an isomorphism. Therefore, the universal property can be used as a definition of the free abelian group of base B. The uniqueness of the group defined by this property shows that all the other definitions are equivalent. It is because of this universal property that free abelian groups are called "free": they are the
free object In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set ''A'' can be thought of as being a "generic" algebraic structure over ''A'': the only equations that hold between eleme ...
s in the
category of abelian groups In mathematics, the category Ab has the abelian groups as objects and group homomorphisms as morphisms. This is the prototype of an abelian category: indeed, every small abelian category can be embedded in Ab. Properties The zero object of ...
, the
category Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) ...
that has abelian groups as its objects and homomorphisms as its arrows. The map from a basis to its free abelian group is a
functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and m ...
, a structure-preserving mapping of categories, from sets to abelian groups, and is adjoint to the
forgetful functor In mathematics, in the area of category theory, a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given sign ...
from abelian groups to sets. However, a ''free abelian'' group is ''not'' a
free group In mathematics, the free group ''F'S'' over a given set ''S'' consists of all words that can be built from members of ''S'', considering two words to be different unless their equality follows from the group axioms (e.g. ''st'' = ''suu''−1' ...
except in two cases: a free abelian group having an empty basis (rank zero, giving the
trivial group In mathematics, a trivial group or zero group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usuall ...
) or having just one element in the basis (rank one, giving the infinite cyclic group). Other abelian groups are not free groups because in free groups ab must be different from ba if a and b are different elements of the basis, while in free abelian groups the two products must be identical for all pairs of elements. In the general
category of groups In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory. Relation to other categories There a ...
, it is an added constraint to demand that ab=ba, whereas this is a necessary property in the category of abelian groups.


Rank

Every two bases of the same free abelian group have the same
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
, so the cardinality of a basis forms an invariant of the group known as its rank. Two free abelian groups are isomorphic if and only if they have the same rank. A free abelian group is finitely generated if and only if its rank is a finite number n, in which case the group is isomorphic to \mathbb^n. This notion of rank can be generalized, from free abelian groups to abelian groups that are not necessarily free. The
rank of an abelian group In mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group ''A'' is the cardinality of a maximal linearly independent subset. The rank of ''A'' determines the size of the largest free abelian group contained in ''A''. If ''A ...
G is defined as the rank of a free abelian subgroup F of G for which the
quotient group A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored" out). For exam ...
G/F is a torsion group. Equivalently, it is the cardinality of a maximal subset of G that generates a free subgroup. The rank is a group invariant: it does not depend on the choice of the subgroup.


Subgroups

Every subgroup of a free abelian group is itself a free abelian group. This result of
Richard Dedekind Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His ...
was a precursor to the analogous
Nielsen–Schreier theorem In group theory, a branch of mathematics, the Nielsen–Schreier theorem states that every subgroup of a free group is itself free. It is named after Jakob Nielsen and Otto Schreier. Statement of the theorem A free group may be defined from a gr ...
that every subgroup of a
free group In mathematics, the free group ''F'S'' over a given set ''S'' consists of all words that can be built from members of ''S'', considering two words to be different unless their equality follows from the group axioms (e.g. ''st'' = ''suu''−1' ...
is free, and is a generalization of the fact that every nontrivial subgroup of the infinite cyclic group is infinite cyclic. The proof needs the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
. A proof using Zorn's lemma (one of many equivalent assumptions to the axiom of choice) can be found in
Serge Lang Serge Lang (; May 19, 1927 – September 12, 2005) was a French-American mathematician and activist who taught at Yale University for most of his career. He is known for his work in number theory and for his mathematics textbooks, including the i ...
's ''Algebra''.
Solomon Lefschetz Solomon Lefschetz (russian: Соломо́н Ле́фшец; 3 September 1884 – 5 October 1972) was an American mathematician who did fundamental work on algebraic topology, its applications to algebraic geometry, and the theory of non-linear o ...
and
Irving Kaplansky Irving Kaplansky (March 22, 1917 – June 25, 2006) was a mathematician, college professor, author, and amateur musician.O'Connor, John J.; Robertson, Edmund F., "Irving Kaplansky", MacTutor History of Mathematics archive, University of St Andr ...
argue that using the
well-ordering principle In mathematics, the well-ordering principle states that every non-empty set of positive integers contains a least element. In other words, the set of positive integers is well-ordered by its "natural" or "magnitude" order in which x precedes y ...
in place of Zorn's lemma leads to a more intuitive proof. In the case of finitely generated free abelian groups, the proof is easier, does not need the axiom of choice, and leads to a more precise result. If G is a subgroup of a finitely generated free abelian group F, then G is free and there exists a basis (e_1, \ldots, e_n) of F and positive integers d_1, d_2, \ldots, d_k (that is, each one divides the next one) such that (d_1e_1,\ldots, d_ke_k) is a basis of G. Moreover, the sequence d_1,d_2,\ldots,d_k depends only on F and G and not on the basis. A
constructive proof In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existenc ...
of the existence part of the theorem is provided by any algorithm computing the
Smith normal form In mathematics, the Smith normal form (sometimes abbreviated SNF) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can b ...
of a matrix of integers. Uniqueness follows from the fact that, for any r\le k, the
greatest common divisor In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers ''x'', ''y'', the greatest common divisor of ''x'' and ''y'' is ...
of the minors of rank r of the matrix is not changed during the Smith normal form computation and is the product d_1\cdots d_r at the end of the computation.


Torsion and divisibility

All free abelian groups are torsion-free, meaning that there is no non-identity group element x and nonzero integer n such that nx=0. Conversely, all finitely generated torsion-free abelian groups are free abelian. The additive group of rational numbers \mathbb provides an example of a torsion-free (but not finitely generated) abelian group that is not free abelian. One reason that \mathbb is not free abelian is that it is
divisible In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
, meaning that, for every element x\in\mathbb and every nonzero integer n, it is possible to express x as a scalar multiple ny of another element y=x/n. In contrast, non-trivial free abelian groups are never divisible, because in a free abelian group the basis elements cannot be expressed as multiples of other elements.


Symmetry

The symmetries of any group can be described as
group automorphism In abstract algebra, a group isomorphism is a function between two groups that sets up a one-to-one correspondence between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two gro ...
s, the
invertible In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that is ...
homomorphisms from the group to itself. In non-abelian groups these are further subdivided into
inner Interior may refer to: Arts and media * ''Interior'' (Degas) (also known as ''The Rape''), painting by Edgar Degas * ''Interior'' (play), 1895 play by Belgian playwright Maurice Maeterlinck * ''The Interior'' (novel), by Lisa See * Interior de ...
and
outer {{Short pages monitor