extracellular enzymes
   HOME

TheInfoList



OR:

Extracellular enzymes or exoenzymes are synthesized inside the
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
and then secreted outside the cell, where their function is to break down complex
macromolecules A macromolecule is a very large molecule important to biophysical processes, such as a protein or nucleic acid. It is composed of thousands of covalently bonded atoms. Many macromolecules are polymers of smaller molecules called monomers. The ...
into smaller units to be taken up by the cell for growth and assimilation. These enzymes degrade complex organic matter such as
cellulose Cellulose is an organic compound with the formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell w ...
and
hemicellulose A hemicellulose (also known as polyose) is one of a number of heteropolymers (matrix polysaccharides), such as arabinoxylans, present along with cellulose in almost all terrestrial plant cell walls.Scheller HV, Ulvskov Hemicelluloses.// Annu Rev ...
into simple sugars that enzyme-producing organisms use as a source of carbon, energy, and nutrients. Grouped as
hydrolases Hydrolase is a class of enzyme that commonly perform as biochemical catalysts that use water to break a chemical bond, which typically results in dividing a larger molecule into smaller molecules. Some common examples of hydrolase enzymes are este ...
, lyases,
oxidoreductases In biochemistry, an oxidoreductase is an enzyme that catalyzes the transfer of electrons from one molecule, the reductant, also called the electron donor, to another, the oxidant, also called the electron acceptor. This group of enzymes usually uti ...
and
transferases A transferase is any one of a class of enzymes that catalyse the transfer of specific functional groups (e.g. a methyl or glycosyl group) from one molecule (called the donor) to another (called the acceptor). They are involved in hundreds of d ...
, these extracellular enzymes control soil enzyme activity through efficient degradation of
biopolymers Biopolymers are natural polymers produced by the cells of living organisms. Like other polymers, biopolymers consist of monomeric units that are covalently bonded in chains to form larger molecules. There are three main classes of biopolymers, c ...
. Plant residues, animals and microorganisms enter the dead organic matter pool upon senescence and become a source of nutrients and energy for other organisms. Extracellular enzymes target
macromolecules A macromolecule is a very large molecule important to biophysical processes, such as a protein or nucleic acid. It is composed of thousands of covalently bonded atoms. Many macromolecules are polymers of smaller molecules called monomers. The ...
such as carbohydrates ( cellulases), lignin ( oxidases), organic phosphates (
phosphatases In biochemistry, a phosphatase is an enzyme that uses water to cleave a phosphoric acid monoester into a phosphate ion and an alcohol. Because a phosphatase enzyme catalyzes the hydrolysis of its substrate, it is a subcategory of hydrolases. ...
), amino sugar polymers (
chitinase Chitinases (EC 3.2.1.14, chitodextrinase, 1,4-β-poly-N-acetylglucosaminidase, poly-β-glucosaminidase, β-1,4-poly-N-acetyl glucosamidinase, poly ,4-(N-acetyl-β-D-glucosaminide)glycanohydrolase, (1→4)-2-acetamido-2-deoxy-β-D-glucan glycano ...
s) and proteins (
proteases A protease (also called a peptidase, proteinase, or proteolytic enzyme) is an enzyme that catalyzes (increases reaction rate or "speeds up") proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the for ...
) and break them down into soluble sugars that are subsequently transported into cells to support heterotrophic metabolism. Biopolymers are structurally complex and require the combined actions of a community of diverse microorganisms and their secreted exoenzymes to depolymerize the polysaccharides into easily assimilable
monomers In chemistry, a monomer ( ; ''mono-'', "one" + '' -mer'', "part") is a molecule that can react together with other monomer molecules to form a larger polymer chain or three-dimensional network in a process called polymerization. Classification Mo ...
. These microbial communities are ubiquitous in nature, inhabiting both terrestrial and aquatic
ecosystems An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the syst ...
. The cycling of elements from dead organic matter by
heterotrophic A heterotroph (; ) is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but ...
soil microorganisms is essential for nutrient turnover and energy transfer in terrestrial ecosystems. Exoenzymes also aid digestion in the guts of ruminants, termites, humans and herbivores. By hydrolyzing plant cell wall polymers, microbes release energy that has the potential to be used by humans as biofuel. Other human uses include waste water treatment, composting and bioethanol production.


Factors influencing extracellular enzyme activity

Extracellular enzyme production supplements the direct uptake of nutrients by microorganisms and is linked to nutrient availability and environmental conditions. The varied chemical structure of organic matter requires a suite of extracellular enzymes to access the carbon and nutrients embedded in detritus. Microorganisms differ in their ability to break down these different substrates and few organisms have the potential to degrade all the available plant cell wall materials. To detect the presence of complex polymers, some exoenzymes are produced constitutively at low levels, and expression is
upregulated In the biological context of organisms' production of gene products, downregulation is the process by which a cell decreases the quantity of a cellular component, such as RNA or protein, in response to an external stimulus. The complementary pro ...
when the substrate is abundant. This sensitivity to the presence of varying concentrations of substrate allows fungi to respond dynamically to the changing availability of specific resources. Benefits of exoenzyme production can also be lost after secretion because the enzymes are liable to denature, degrade or diffuse away from the producer cell. Enzyme production and secretion is an energy intensive process and, because it consumes resources otherwise available for reproduction, there is evolutionary pressure to conserve those resources by limiting production. Thus, while most microorganisms can assimilate simple monomers, degradation of polymers is specialized, and few organisms can degrade recalcitrant polymers like cellulose and lignin. Each microbial species carries specific combinations of genes for extracellular enzymes and is adapted to degrade specific substrates. In addition, the expression of genes that encode for enzymes is typically regulated by the availability of a given substrate. For example, presence of a low-molecular weight soluble substrate such as glucose will inhibit enzyme production by repressing the transcription of associated cellulose-degrading enzymes. Environmental conditions such as soil pH, soil temperature, moisture content, and plant litter type and quality have the potential to alter exoenzyme expression and activity. Variations in seasonal temperatures can shift metabolic needs of microorganisms in synchrony with shifts in plant nutrient requirements. Agricultural practices such as fertilizer amendments and tillage can change the spatial distribution of resources, resulting in altered exoenzyme activity in the
soil profile A soil horizon is a layer parallel to the soil surface whose physical, chemical and biological characteristics differ from the layers above and beneath. Horizons are defined in many cases by obvious physical features, mainly colour and texture. ...
. Introduction of moisture exposes soil organic matter to enzyme catalysis and also increases loss of soluble monomers via diffusion. Additionally, osmotic shock resulting from water potential changes can impact enzyme activities as microbes redirect energy from enzyme production to synthesizing
osmolyte Osmolytes are low-molecular weight organic compounds that influence the properties of biological fluids. Their primary role is to maintain the integrity of cells by affecting the viscosity, melting point, and ionic strength of the aqueous solution. ...
s to maintain cellular structures.


Extracellular enzyme activity in fungi during plant decomposition

Most of the extracellular enzymes involved in polymer degradation in leaf litter and soil have been ascribed to fungi. By adapting their metabolism to the availability of varying amounts of carbon and nitrogen in the environment, fungi produce a mixture of oxidative and hydrolytic enzymes to efficiently break down lignocelluloses like wood. During plant litter degradation, cellulose and other labile substrates are degraded first followed by lignin depolymerization with increased oxidative enzyme activity and shifts in microbial community composition. In plant cell walls, cellulose and hemicellulose is embedded in a pectin scaffold that requires pectin degrading enzymes, such as
polygalacturonase Endo-polygalacturonase (EC 3.2.1.15, pectin depolymerase, pectolase, pectin hydrolase, and poly-α-1,4-galacturonide glycanohydrolase; systematic name (1→4)-α-D-galacturonan glycanohydrolase (endo-cleaving)) is an enzyme that hydrolyzes the α- ...
s and
pectin lyase Pectin lyase (), also known as pectolyase, is a naturally occurring pectinase, a type of enzyme that degrades pectin. It is produced commercially for the food industry from fungi and used to destroy residual fruit starch, known as pectin, in wine ...
s to weaken the plant cell wall and uncover hemicellulose and cellulose to further enzymatic degradation. Degradation of lignin is catalyzed by enzymes that oxidase aromatic compounds, such as phenol oxidases,
peroxidases Peroxidases or peroxide reductases ( EC numberbr>1.11.1.x are a large group of enzymes which play a role in various biological processes. They are named after the fact that they commonly break up peroxides. Functionality Peroxidases typically ca ...
and laccases. Many fungi have multiple genes encoding lignin-degrading exoenzymes. Most efficient wood degraders are
saprotrophic Saprotrophic nutrition or lysotrophic nutrition is a process of chemoheterotrophic extracellular digestion involved in the processing of decayed (dead or waste) organic matter. It occurs in saprotrophs, and is most often associated with fungi ( ...
ascomycetes and
basidiomycetes Basidiomycota () is one of two large divisions that, together with the Ascomycota, constitute the subkingdom Dikarya (often referred to as the "higher fungi") within the kingdom Fungi. Members are known as basidiomycetes. More specifically, Ba ...
. Traditionally, these fungi are classified as brown rot (Ascomycota and Basidiomycota), white rot (Basidiomycota) and soft rot (Ascomycota) based on the appearance of the decaying material. Brown rot fungi preferentially attack cellulose and hemicellulose; while white rot fungi degrade cellulose and lignin. To degrade cellulose, basidiomycetes employ hydrolytic enzymes, such as
endoglucanase Cellulase (EC 3.2.1.4; systematic name 4-β-D-glucan 4-glucanohydrolase) is any of several enzymes produced chiefly by fungi, bacteria, and protozoans that catalyze cellulolysis, the decomposition of cellulose and of some related polysaccharide ...
s, cellobiohydrolase and β-glucosidase. Production of endoglucanases is widely distributed among fungi and cellobiohydrolases have been isolated in multiple white-rot fungi and in plant pathogens. β-glucosidases are secreted by many wood-rotting fungi, both white and brown rot fungi, mycorrhizal fungi and in plant pathogens. In addition to cellulose, β-glucosidases can cleave xylose, mannose and galactose. In white-rot fungi such as '' Phanerochaete chrysosporium'', expression of manganese-peroxidase is induced by the presence of manganese, hydrogen peroxide and lignin, while laccase is induced by availability of phenolic compounds. Production of lignin-peroxidase and manganese-peroxidase is the hallmark of basidiomycetes and is often used to assess basidiomycete activity, especially in biotechnology applications. Most white-rot species also produce laccase, a copper-containing enzyme that degrades polymeric lignin and
humic Humic substances (HS) are organic compounds that are important components of humus, the major organic fraction of soil, peat, and coal (and also a constituent of many upland streams, dystrophic lakes, and ocean water). For a long era in the 19th an ...
substances. Brown-rot basidiomycetes are most commonly found in coniferous forests, and are so named because they degrade wood to leave a brown residue that crumbles easily. Preferentially attacking hemicellulose in wood, followed by cellulose, these fungi leave lignin largely untouched. The decayed wood of soft-rot Ascomycetes is brown and soft. One soft-rot Ascomycete, '' Trichoderma reesei'', is used extensively in industrial applications as a source for cellulases and hemicellulases. Laccase activity has been documented in ''T. reesei'', in some species in the
Aspergillus ' () is a genus consisting of several hundred mold species found in various climates worldwide. ''Aspergillus'' was first catalogued in 1729 by the Italian priest and biologist Pier Antonio Micheli. Viewing the fungi under a microscope, Mic ...
genus Genus ( plural genera ) is a taxonomic rank used in the biological classification of living and fossil organisms as well as viruses. In the hierarchy of biological classification, genus comes above species and below family. In binomial nom ...
and in freshwater ascomycetes.


Measuring fungal extracellular enzyme activity in soil, plant litter, and other environmental samples

Methods for estimating soil enzyme activities involve sample harvesting prior to analysis, mixing of samples with buffers and the use of substrate. Results can be influenced by: sample transport from field-site, storage methods, pH conditions for assay, substrate concentrations, temperature at which the assay is run, sample mixing and preparation. For hydrolytic enzymes, colorimetric assays are required that use a p-nitrophenol (p-NP)-linked substrate, or
fluorometric Fluorescence spectroscopy (also known as fluorimetry or spectrofluorometry) is a type of electromagnetic spectroscopy that analyzes fluorescence from a sample. It involves using a beam of light, usually ultraviolet light, that excites the electron ...
assays that use a 4-methylumbelliferone (MUF)-linked substrate. Oxidative enzymes such as phenol oxidase and peroxidase mediate lignin degradation and humification. Phenol oxidase activity is quantified by oxidation of L-3, 4-dihydoxyphenylalanine (L-DOPA),
pyrogallol Pyrogallol is an organic compound with the formula C6H3(OH)3. It is a water-soluble, white solid although samples are typically brownish because of its sensitivity toward oxygen. It is one of three isomers of benzenetriols. Production and reac ...
(1, 2, 3-trihydroxybenzene), or ABTS (2, 2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid). Peroxidase activity is measured by running the phenol oxidase assay concurrently with another assay with L-DOPA and hydrogen peroxide (H2O2) added to every sample. The difference in measurements between the two assays is indicative of peroxidase activity. Enzyme assays typically apply proxies that reveal exo-acting activities of enzymes. Exo-acting enzymes hydrolyze substrates from the terminal position. While activity of endo-acting enzymes which break down polymers midchain need to be represented by other substrate proxies. New enzyme assays aim to capture the diversity of enzymes and assess the potential activity of them in a more clear way. With newer technologies available, molecular methods to quantify abundance of enzyme-coding genes are used to link enzymes with their producers in soil environments. Transcriptome analyses are now employed to examine genetic controls of enzyme expression, while
proteomic Proteomics is the large-scale study of proteins. Proteins are vital parts of living organisms, with many functions such as the formation of structural fibers of muscle tissue, enzymatic digestion of food, or synthesis and replication of DNA. In ...
methods can reveal the presence of enzymes in the environment and link to the organisms producing them.


Applications of fungal extracellular enzymes


See also

* Enzymes *
Enzyme kinetics Enzyme kinetics is the study of the rates of enzyme-catalysed chemical reactions. In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction are investigated. Studying an enzyme's kinetics in thi ...
*
Enzyme assay Enzyme assays are laboratory methods for measuring enzymatic activity. They are vital for the study of enzyme kinetics and enzyme inhibition. Enzyme units The quantity or concentration of an enzyme can be expressed in molar amounts, as with a ...
* List of enzymes *
Decomposition Decomposition or rot is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is e ...
*
Plant litter Plant litter (also leaf litter, tree litter, soil litter, litterfall or duff) is dead plant material (such as leaves, bark, needles, twigs, and cladodes) that have fallen to the ground. This detritus or dead organic material and its constitue ...
*
Nutrient cycle A nutrient cycle (or ecological recycling) is the movement and exchange of inorganic and organic matter back into the production of matter. Energy flow is a unidirectional and noncyclic pathway, whereas the movement of mineral nutrients is cyc ...


References


Further reading


Enzyme nomenclature


*Richard P. Dick (ed.) 2011. Methods in Soil Enzymology. ''Soil Science Society of America'', Wisconsin, USA {{ISBN, 978-0-89118-854-4


External links


ExplorEnz
searchable enzyme database to access the IUBMB Enzyme Nomenclature List
BRENDA
– database and related literature of known enzymes
Enzyme structuresExPASy
database for sequence data
KEGG: Kyoto Encyclopedia of Genes and Genomes
biochemical pathways and enzymes database
MycoCLAP
searchable database of fungal enzyme genes
MetaCyc
metabolic pathways of different organisms
Pectinase
database for pectinase enzymes and their inhibitors Mycology