HOME

TheInfoList



OR:

Embrittlement is a significant decrease of
ductility Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile str ...
of a material, which makes the material
brittle A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. Br ...
. Embrittlement is used to describe any phenomena where the environment compromises a stressed material's mechanical performance, such as temperature or environmental composition. This is oftentimes undesirable as brittle fracture occurs quicker and can much more easily propagate than ductile fracture, leading to complete failure of the equipment. Various materials have different mechanisms of embrittlement, therefore it can manifest in a variety of ways, from slow crack growth to a reduction of tensile ductility and toughness.


Mechanisms

Embrittlement is a series complex mechanism that is not completely understood. The mechanisms can be driven by temperature, stresses, grain boundaries, or material composition. However, by studying the embrittlement process, preventative measures can be put in place to mitigate the effects. There are several ways to study the mechanisms. During metal embrittlement (ME), crack-growth rates can be measured. Computer simulations can also be used to enlighten the mechanisms behind embrittlement. This is helpful for understanding hydrogen embrittlement (HE), as the diffusion of hydrogen through materials can be modeled. The embrittler does not play a role in final fracture; it is mostly responsible for crack propagation. Cracks must first nucleate. Most embrittlement mechanisms can cause fracture transgranularly or intergranularly. For metal embrittlement, only certain combinations of metals, stresses, and temperatures are susceptible. This is contrasted to stress-corrosion cracking where virtually any metal can be susceptible given the correct environment. Yet this mechanism is much slower than that of liquid metal embrittlement (LME), suggesting that it directs a flow of atoms both towards and away from the crack. For neutron embrittlement, the main mechanism is collisions within the material from the fission byproducts.


Embrittlement of metals


Hydrogen embrittlement

One of the most well discussed, and detrimental, embrittlement is hydrogen embrittlement in metals. There are multiple ways that hydrogen atoms can diffuse into metals, including from environment or during processing (eg. electroplating). The exact mechanism that causes hydrogen embrittlement is still not determined, but many theories are proposed and are still undergoing verification. Hydrogen atoms are likely to diffuse to grain boundaries of metals, which becomes a barrier for dislocation motion and builds up stress near the atoms. When the metal is stressed, the stress is concentrated near the grain boundaries due to hydrogen atoms, allowing a crack to nucleate and propagate along the grain boundaries to relieve the built-up stress. There are many ways to prevent or reduce the impact of hydrogen embrittlement in metals. One of the more conventional ways is to place coatings around the metal, which will act as diffusion barriers that prevents hydrogen from being introduced from the environment into the material. Another way is to add traps or absorbers in the alloy which takes into the hydrogen atom and forms another compound.


Radiation embrittlement

Radiation embrittlement, also known as neutron embrittlement, is a phenomenon more commonly observed in reactors and nuclear plants as these materials are constantly exposed to a steady amount of radiation. When a neutron irradiates the metal, voids are created in the material, which is known as void swelling. If the material is under creep (under low strain rate and high temperature condition), the voids will coalesce into vacancies which compromises the mechanical strength of the workpiece.


Low temperature embrittlement

At low temperatures, some metals can undergo a ductile-brittle transition which makes the material brittle and could lead to catastrophic failure during operation. This temperature is commonly called a
ductile-brittle transition temperature Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stres ...
or embrittlement temperature. Research has shown that low temperature embrittlement and brittle fracture only occurs under these specific criteria: # There is enough stress to nucleate a crack. # The stress at the crack exceeds a critical value that will open up the crack (also known as Griffith's criterion for crack opening). # High resistance to dislocation movement. # There should be a small amount of viscous drag of dislocation to ensure opening of crack. All metals can fulfill criteria 1, 2, 4. However, only BCC and some HCP metals meets the third condition as they have high Peierl's barrier and strong energy of elastic interaction of dislocation and defects. All FCC and most HCP metals have low Peierl's barrier and weak elastic interaction energy. Plastics and rubbers also exhibit the same transition at low temperatures. Historically, there are multiple instances where people are operating equipment at cold temperatures that led to unexpected, but also catastrophic, failure. In
Cleveland Cleveland ( ), officially the City of Cleveland, is a city in the United States, U.S. U.S. state, state of Ohio and the county seat of Cuyahoga County, Ohio, Cuyahoga County. Located in the northeastern part of the state, it is situated along ...
in 1944, a cylindrical steel tank containing liquefied natural gas ruptured because of its low
ductility Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile str ...
at the operating temperature. Another famous example was the unexpected fracture of 160
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the World War II by country, vast majority of the world's countries—including all of the great power ...
liberty ships Liberty ships were a class of cargo ship built in the United States during World War II under the Emergency Shipbuilding Program. Though British in concept, the design was adopted by the United States for its simple, low-cost construction. M ...
during winter months. The crack was formed at the middle of the ships and propagated through, breaking the ships in half quite literally.


Other types of embrittlement

*
Stress corrosion cracking Stress corrosion cracking (SCC) is the growth of crack formation in a corrosive environment. It can lead to unexpected and sudden failure of normally ductile metal alloys subjected to a tensile stress, especially at elevated temperature. S ...
(SCC) is the embrittlement caused by exposure to aqueous, corrosive materials. It relies on both a corrosive environment and the presence of tensile (not compressive) stress. * Sulfide stress cracking is the embrittlement caused by absorption of
hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is poisonous, corrosive, and flammable, with trace amounts in ambient atmosphere having a characteristic foul odor of rotten eggs. The under ...
. * Adsorption embrittlement is the embrittlement caused by wetting. * Liquid metal embrittlement (LME) is the embrittlement caused by liquid metals. *
Metal-induced embrittlement Metal-induced embrittlement (MIE) is the embrittlement caused by diffusion of metal, either solid or liquid, into the base material. Metal induced embrittlement occurs when metals are in contact with low-melting point metals while under tensile s ...
(MIE) is the embrittlement caused by diffusion of atoms of metal, either solid or liquid, into the material. For example, cadmium coating on high-strength steel, which was originally done to prevent corrosion. * Grain boundary segregation can cause brittle
intergranular fracture Intergranular fracture, intergranular cracking or intergranular embrittlement occurs when a crack propagates along the grain boundaries of a material, usually when these grain boundaries are weakened.Norman E. Dowling, Mechanical Behavior of Materi ...
. During solidification the grain boundaries end up as the repository for the impurities in the alloy by segregation. This grain boundary segregation can create a network of low-toughness paths through the material. * The primary embrittlement mechanism of
plastics Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptabi ...
is gradual loss of
plasticizer A plasticizer ( UK: plasticiser) is a substance that is added to a material to make it softer and more flexible, to increase its plasticity, to decrease its viscosity, and/or to decrease friction during its handling in manufacture. Plasticiz ...
s, usually by overheating or aging. * The primary embrittlement mechanism of
asphalt Asphalt, also known as bitumen (, ), is a sticky, black, highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term ...
is by oxidation, which is most severe in warmer climates. Asphalt pavement embrittlement (aka
crocodile cracking Crocodile cracking, also called alligator cracking and perhaps misleadingly fatigue cracking, is a common type of distress in asphalt pavement. The following is more closely related to fatigue cracking which is characterized by interconnecting ...
) can lead to various forms of cracking patterns, including longitudinal, transverse, and block (hexagonal). Asphalt oxidation is related to
polymer degradation Polymer degradation is the reduction in the physical properties of a polymer, such as strength, caused by changes in its chemical composition. Polymers and particularly plastics are subject to degradation at all stages of their product life cycl ...
, as these materials bear similarities in their chemical composition.


Embrittlement of inorganic glasses and ceramics

The mechanisms of embrittlement are similar to those of metals. Inorganic
glass Glass is a non- crystalline, often transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling (quenchin ...
embrittlement can be manifested via static fatigue. Embrittlement in glasses, such as
Pyrex Pyrex (trademarked as ''PYREX'' and ''pyrex'') is a brand introduced by Corning Inc. in 1915 for a line of clear, low-thermal-expansion borosilicate glass used for laboratory glassware and kitchenware. It was later expanded to include kitchenwa ...
, is a function of
humidity Humidity is the concentration of water vapor present in the air. Water vapor, the gaseous state of water, is generally invisible to the human eye. Humidity indicates the likelihood for precipitation, dew, or fog to be present. Humidity dep ...
. Growth rate of cracks vary linearly with humidity, suggesting a first-order kinetic relationship. It is important to note that the static fatigue of Pyrex by this mechanism requires dissolution to be concentrated at the tip of the crack. If the dissolution is uniform along the crack flat surfaces, the crack tip will be blunted. This blunting can actually increase the fracture strength of the material by 100 times. The embrittlement of SiC/ alumina composites serves as an instructive example. The mechanism for this system is primarily the
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical ...
of
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
into the material through cracks in the matrix. The oxygen reaches the SiC fibers and produces
silicate In chemistry, a silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is a ...
. Stress concentrates around the newly formed silicate and the fibers' strength is degraded. This ultimately leads to fracture at stresses less than the material's typical ultimate
tensile stress In continuum mechanics, stress is a physical quantity. It is a quantity that describes the magnitude of forces that cause deformation. Stress is defined as ''force per unit area''. When an object is pulled apart by a force it will cause elonga ...
.


Embrittlement of polymers

Polymer A polymer (; Greek '' poly-'', "many" + '' -mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
s come in a wide variety of compositions, and this diversity of chemistry results in wide-ranging embrittlement mechanisms. The most common sources of polymer embrittlement include oxygen in the air, water in liquid or vapor form,
ultraviolet radiation Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation i ...
from the sun,
acid In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a se ...
s, and
organic solvents A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for p ...
. One of the ways these sources alter the mechanical properties of polymers is through chain scission and chain
cross-link In chemistry and biology a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can be either synthetic polymers or natural ...
ing. Chain scission occurs when atomic bonds are broken in the main chain, so environments with elements such as
solar radiation Solar irradiance is the power per unit area ( surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre ...
lead to this form of embrittlement. Chain scission reduces the length of the polymer chains in a material, resulting in a reduction of strength. Chain cross-linking has the opposite effect. An increase in the number of cross-links (due to an
oxidative Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
environment for example), results in stronger, less ductile material. The
thermal oxidation In microfabrication, thermal oxidation is a way to produce a thin layer of oxide (usually silicon dioxide) on the surface of a wafer. The technique forces an oxidizing agent to diffuse into the wafer at high temperature and react with it. The ra ...
of
polyethylene Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging ( plastic bags, plastic films, geomembranes and containers including b ...
provides a quality example of chain scission embrittlement. The random chain scission induced a change from ductile to brittle behavior once the average molar mass of the chains dropped below a critical value. For the polyethylene system, embrittlement occurred when the weight average molar mass fell below 90 kg/mol. The reason for this change was hypothesized to be a reduction of entanglement and an increase in
crystallinity Crystallinity refers to the degree of structural order in a solid. In a crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic stru ...
. The ductility of polymers is typically a result of their amorphous structure, so an increase in crystallinity makes the polymer more brittle. The embrittlement of
silicone rubber Silicone rubber is an elastomer (rubber-like material) composed of silicone—itself a polymer—containing silicon together with carbon, hydrogen, and oxygen. Silicone rubbers are widely used in industry, and there are multiple formulation ...
is due to an increase in the amount of chain cross-linking. When silicone rubber is exposed to air at temperatures above oxidative cross-linking reactions occur at methyl side groups along the main chain. These cross-links make the rubber significantly less ductile. Solvent stress cracking is a significant polymer embrittlement mechanism. It occurs when liquids or gasses are absorbed into the polymer, ultimately swelling the system. The polymer swelling results in less shear flow and an increase in
crazing Crazing is the phenomenon that produces a network of fine cracks on the surface of a material, for example in a glaze layer. Crazing frequently precedes fracture in some glassy thermoplastic polymers. As it only takes place under tensile stre ...
susceptibility. Solvent stress cracking from organic solvents typically results in static fatigue because of the low mobility of fluids. Solvent stress cracking from gasses is more likely to result in greater crazing susceptibility.
Polycarbonate Polycarbonates (PC) are a group of thermoplastic polymers containing carbonate groups in their chemical structures. Polycarbonates used in engineering are strong, tough materials, and some grades are optically transparent. They are easily work ...
provides a good example of solvent stress cracking. Numerous solvents have been shown to embrittle polycarbonate (i.e.
benzene Benzene is an organic chemical compound with the molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar ring with one hydrogen atom attached to each. Because it contains only carbon and hydrogen atoms ...
,
toluene Toluene (), also known as toluol (), is a substituted aromatic hydrocarbon. It is a colorless, water-insoluble liquid with the smell associated with paint thinners. It is a mono-substituted benzene derivative, consisting of a methyl group (CH3) ...
,
acetone Acetone (2-propanone or dimethyl ketone), is an organic compound with the formula . It is the simplest and smallest ketone (). It is a colorless, highly volatile and flammable liquid with a characteristic pungent odour. Acetone is miscibl ...
) through a similar mechanism. The solvent diffuses into the bulk, swells the polymer, induces crystallization, and ultimately produces interfaces between ordered and disordered regions. These interfaces produce voids and stress fields that can be propagated throughout the material at stresses much lower than the typical
tensile strength Ultimate tensile strength (UTS), often shortened to tensile strength (TS), ultimate strength, or F_\text within equations, is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials ...
of the polymer.Miller, G. W., et al. "On the Solvent Stress-Cracking of Polycarbonate." Polymer Engineering and Science, vol. 11, no. 2, 1971, pp. 73–82., doi:10.1002/pen.760110202


References

{{Authority control Corrosion Materials degradation