HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, an elementary matrix is a
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** '' The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
which differs from the
identity matrix In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial or ...
by one single elementary row operation. The elementary matrices generate the general linear group GL''n''(F) when F is a field. Left multiplication (pre-multiplication) by an elementary matrix represents elementary row operations, while right multiplication (post-multiplication) represents elementary column operations. Elementary row operations are used in
Gaussian elimination In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of operations performed on the corresponding matrix of coefficients. This method can also be used ...
to reduce a matrix to
row echelon form In linear algebra, a matrix is in echelon form if it has the shape resulting from a Gaussian elimination. A matrix being in row echelon form means that Gaussian elimination has operated on the rows, and column echelon form means that Gaussian ...
. They are also used in Gauss–Jordan elimination to further reduce the matrix to
reduced row echelon form In linear algebra, a matrix is in echelon form if it has the shape resulting from a Gaussian elimination. A matrix being in row echelon form means that Gaussian elimination has operated on the rows, and column echelon form means that Gaussian e ...
.


Elementary row operations

There are three types of elementary matrices, which correspond to three types of row operations (respectively, column operations): ;Row switching: A row within the matrix can be switched with another row. : R_i \leftrightarrow R_j ;Row multiplication: Each element in a row can be multiplied by a non-zero constant. It is also known as ''scaling'' a row. : kR_i \rightarrow R_i,\ \mbox k \neq 0 ;Row addition: A row can be replaced by the sum of that row and a multiple of another row. : R_i + kR_j \rightarrow R_i, \mbox i \neq j If ''E'' is an elementary matrix, as described below, to apply the elementary row operation to a matrix ''A'', one multiplies ''A'' by the elementary matrix on the left, ''EA''. The elementary matrix for any row operation is obtained by executing the operation on the
identity matrix In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial or ...
. This fact can be understood as an instance of the
Yoneda lemma In mathematics, the Yoneda lemma is arguably the most important result in category theory. It is an abstract result on functors of the type ''morphisms into a fixed object''. It is a vast generalisation of Cayley's theorem from group theory (vie ...
applied to the category of matrices.


Row-switching transformations

The first type of row operation on a matrix ''A'' switches all matrix elements on row ''i'' with their counterparts on row ''j''. The corresponding elementary matrix is obtained by swapping row ''i'' and row ''j'' of the
identity matrix In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial or ...
. :T_ = \begin 1 & & & & & & \\ & \ddots & & & & & \\ & & 0 & & 1 & & \\ & & & \ddots & & & \\ & & 1 & & 0 & & \\ & & & & & \ddots & \\ & & & & & & 1 \end So ''T''''ij''''A'' is the matrix produced by exchanging row ''i'' and row ''j'' of ''A''. Coefficient wise, the matrix T_ is defined by : : _ = \begin 0 & k \neq i, k \neq j ,k \neq l \\ 1 & k \neq i, k \neq j, k = l\\ 0 & k = i, l \neq j\\ 1 & k = i, l = j\\ 0 & k = j, l \neq i\\ 1 & k = j, l = i\\ \end


Properties

* The inverse of this matrix is itself: ''T''''ij''−1 = ''T''''ij''. * Since the
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if a ...
of the identity matrix is unity, det(''T''''ij'') = −1. It follows that for any square matrix ''A'' (of the correct size), we have det(''T''''ij''''A'') = −det(''A'').


Row-multiplying transformations

The next type of row operation on a matrix ''A'' multiplies all elements on row ''i'' by ''m'' where ''m'' is a non-zero scalar (usually a real number). The corresponding elementary matrix is a diagonal matrix, with diagonal entries 1 everywhere except in the ''i''th position, where it is ''m''. :D_i(m) = \begin 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & & m & & & \\ & & & & 1 & & \\ & & & & & \ddots & \\ & & & & & & 1 \end So ''D''''i''(''m'')''A'' is the matrix produced from ''A'' by multiplying row ''i'' by ''m''. Coefficient wise, the D_i(m) matrix is defined by : : _i(m) = \begin 0 & k \neq l \\ 1 & k = l, k \neq i \\ m & k = l, k= i \end


Properties

* The inverse of this matrix is given by ''D''''i''(''m'')−1 = ''D''''i''(1/''m''). * The matrix and its inverse are diagonal matrices. * det(''D''''i''(''m'')) = ''m''. Therefore for a square matrix ''A'' (of the correct size), we have det(''D''''i''(''m'')''A'') = ''m'' det(''A'').


Row-addition transformations

The final type of row operation on a matrix ''A'' adds row ''j'' multiplied by a scalar ''m'' to row ''i''. The corresponding elementary matrix is the identity matrix but with an ''m'' in the (''i'', ''j'') position. :L_(m) = \begin 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & & \ddots & & & \\ & & m & & 1 & & \\ & & & & & \ddots & \\ & & & & & & 1 \end So ''L''''ij''(''m'')''A'' is the matrix produced from ''A'' by adding ''m'' times row ''j'' to row ''i''. And ''A'' ''L''''ij''(''m'') is the matrix produced from ''A'' by adding ''m'' times column ''i'' to column ''j''. Coefficient wise, the matrix L_(m) is defined by : : _(m) = \begin 0 & k \neq l, k \neq i, l \neq j \\ 1 & k = l \\ m & k = i, l = j \end


Properties

* These transformations are a kind of shear mapping, also known as a ''transvections''. * The inverse of this matrix is given by ''L''''ij''(''m'')−1 = ''L''''ij''(−''m''). * The matrix and its inverse are triangular matrices. * det(''L''''ij''(''m'')) = 1. Therefore, for a square matrix ''A'' (of the correct size) we have det(''L''''ij''(''m'')''A'') = det(''A''). * Row-addition transforms satisfy the
Steinberg relations In algebraic K-theory, a field of mathematics, the Steinberg group \operatorname(A) of a ring A is the universal central extension of the commutator subgroup of the stable general linear group of A . It is named after Robert Steinberg, and ...
.


See also

*
Gaussian elimination In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of operations performed on the corresponding matrix of coefficients. This method can also be used ...
*
Linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrice ...
*
System of linear equations In mathematics, a system of linear equations (or linear system) is a collection of one or more linear equations involving the same variables. For example, :\begin 3x+2y-z=1\\ 2x-2y+4z=-2\\ -x+\fracy-z=0 \end is a system of three equations in t ...
*
Matrix (mathematics) In mathematics, a matrix (plural matrices) is a rectangle, rectangular array variable, array or table of numbers, symbol (formal), symbols, or expression (mathematics), expressions, arranged in rows and columns, which is used to represent a math ...
* LU decomposition * Frobenius matrix


References

* * * * * * * {{DEFAULTSORT:Elementary Matrix Linear algebra