HOME

TheInfoList



OR:

The operators in elementary
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th ...
are
addition Addition (usually signified by the plus symbol ) is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. The addition of two whole numbers results in the total amount or '' sum'' ...
,
subtraction Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. Subtraction is signified by the minus sign, . For example, in the adjacent picture, there are peaches—meaning 5 peaches with 2 taken ...
,
multiplication Multiplication (often denoted by the Multiplication sign, cross symbol , by the mid-line #Notation and terminology, dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four Elementary arithmetic, elementary Op ...
, and division. The operators can be applied on both
real numbers In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every re ...
and imaginary numbers. Each kind of number is represented on a number line designated to the type.


Digits

Digits are the set of symbols used to represent numbers. In a
numeral system A numeral system (or system of numeration) is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. The same sequence of symbo ...
, each digit represents a value. The
Arabic numerals Arabic numerals are the ten numerical digits: , , , , , , , , and . They are the most commonly used symbols to write decimal numbers. They are also used for writing numbers in other systems such as octal, and for writing identifiers such a ...
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) are the most common set of symbols, and the most frequently used form of these digits is the Western style. A numeral system defines the value of all numbers that contain more than one digit, most often by adding the value of adjacent digits. The Hindu–Arabic numeral system includes
positional notation Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which th ...
to determine the value of any numeral. In this type of system, the increase in value of an additional digit includes one or more multiplications with the
radix In a positional numeral system, the radix or base is the number of unique digits, including the digit zero, used to represent numbers. For example, for the decimal/denary system (the most common system in use today) the radix (base number) is ...
value and the result is added to the value of an adjacent digit. For example, with Arabic numerals, the radix value of ten produces, for the numeral "21", a value of twenty-one (equal to ),and, for the numeral "201", a value of two-hundred-and-one (equal to ). The elementary level of study typically includes understanding the value of individual whole numbers using
Arabic numerals Arabic numerals are the ten numerical digits: , , , , , , , , and . They are the most commonly used symbols to write decimal numbers. They are also used for writing numbers in other systems such as octal, and for writing identifiers such a ...
with a maximum of seven digits, and performing the four elementary operations using Arabic numerals with a maximum of four digits each.


Addition

The combination of two numbers, called addends or summands, is called a sum.


Adding two natural numbers


Example

Imagine there are 2 bags, where the first bag contains five apples, and the second bag contains three apples. Suppose we have a third, empty bag, and the apples from bag 1 and bag 2 are put into bag 3. Then, the third bag now contains eight apples. This illustrates that the combination of three elements and five elements is eight elements, or more generally: "three plus five is eight" or "three plus five equals eight" or "eight is the sum of three and five". Numbers are abstract, and the addition of a collection of three things to a collection of five things will yield a collection of eight things. Addition abstracts the process of "combining" objects: two collections of objects that were counted separately are put into a single collection and counted together so that the count of the new collection is the "sum" of the separate counts of the two original collections. This operation of ''combining'' is only one of several possible meanings that the mathematical operation of addition can have. Other meanings for addition include: *''comparing'' ("Tom has 5 apples. Jane has 3 more apples than Tom. How many apples does Jane have?") *''joining'' ("Tom has 5 apples. Jane gives him 3 more apples. How many apples does Tom have now?") *''measuring'' ("Tom's apple is 5 inches tall. Jane's is also 5 inches tall. How tall will the apples be when put together?") *''separating'' ("Tom had some apples. He gave 3 to Jane. Now he has 5. How many did he start with?"). Addition is represented by the "
plus sign The plus and minus signs, and , are mathematical symbols used to represent the notions of positive and negative, respectively. In addition, represents the operation of addition, which results in a sum, while represents subtraction, res ...
": +. So the statement "three plus five equals eight" is written as . The order in which two numbers are added does not affect the sum, therefor . This is called the
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of ...
property of addition. Some pairs of digits add up to two-digit numbers, with the tens-digit always being a 1. In the addition algorithm, the tens-digit of the sum of a pair of digits is called the " carry digit".


Example

Using the numbers 653 and 274, starting with the ones column, we find that the sum of three and four is seven. Next, the tens-column. The sum of 5 and 7 is 12, which has two digits. The last digit of 12 is written under the tens-column, while the first digit is written above the hundreds-column as a carry digit. Next, the hundreds-column. The sum of 6 and 2 is 8, but the carry digit is present, which added to eight is equal to nine. There are no other digits to add, so the algorithm is finished, yielding the following equation as a result: :653 + 274 = 927


Successor function and size

The result from adding 1 to any
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
(including zero) (''i.e., the set of all non-negative integers'') is the ''successor'' of that number, and the result from the subtraction of one from any whole number (excluding zero) is the ''predecessor'' of that number. For example, the successor of zero is one and the predecessor of eleven is ten. Or mathematically: 0+1=1 and 11-1=10. Every natural number has a successor, and all natural numbers (except zero) have a predecessor. The predecessor of the successor of a number is the number itself. For example, five is the successor of four, and four is the predecessor of five. So, the predecessor of the successor of four is four. If a number is the successor of another number, then the first number is said to be ''greater than'' the other number. If some first number is greater than a second number, and if the second number is greater than a third number, then the first number is also said to be greater than the third number. For example, five is greater than four, and four is greater than three, so therefore five is greater than three. But six is greater than five, and therefore six is also greater than three, and so on. This expresses the fact that the order so-defined on the natural numbers is ''transitive''. If two whole numbers greater than zero are added together, then their sum is greater than either one of them. Example: three plus five equals eight, therefore eight is greater than three () and eight is greater than five (). The symbol for "greater than" is >. If some first number is greater than a second number, then the second number is said to be ''less than'' (<) the first one. Examples: three is less than eight () and five is less than eight (). Given a pair of natural numbers, one and only one of the following cases must be true: *the first number is greater than the second one, *the first number is equal to the second one, *the first number is less than the second one. This expresses the fact that the order so-defined on the natural numbers is ''total'', or ''strongly connected.''


Counting

To count a collection of objects means to assign a natural number to each one of the objects, as if it were a label for that object. Such that a natural number is never assigned to an object unless its predecessor was already assigned to another object, with the exception that zero is not assigned to any object. The smallest natural number assigned is one, and the largest natural number assigned depends on the size of the collection. It is called ''the count'' and it is equal to the number of objects in that collection. Counting can also be seen as the process of tallying using tally marks.


Example

There are 7 apples, and in order to count them, we assign each apple the natural number one. We then increment by one for each apple, until we have no more apples. When counting is finished, the last value of the count will be the final count. This count is said to be the number of objects in the collection (i.e., the cardinality of the collection). Often, when counting objects, one does not keep track of what numerical label corresponds to which object: one only keeps track of the sub-collection of objects that have already been labeled, so as to be able to identify unlabeled objects. However, if one is counting individuals, then it is possible to organize the individuals being counted. This will enable tracking of the numbers each individual has been assigned. After the count has finished it is possible to ask the collection of participants to line up, in order of increasing numerical labels. The participants would line up as follows: The participants who are uncertain of their positions in the line would ask each other what their numbers are: the participant whose number is smaller should sit on the left, and the one with the more significant number on the right. Thus, pairs of participants compare their numbers and positions and commute their positions as necessary, and through repetition of such conditional commutations, they become ordered. In higher mathematics, the process of counting can be also likened to the construction of a
one-to-one correspondence In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
(i.e., a ''bijection'') between the elements of a set and the set , where n is a natural number. Once such a correspondence is established, the first set is then said to be of size n.


Subtraction

Subtraction is the mathematical operation which describes a reduced quantity. The result of this operation is the ''difference'' between two numbers, the ''minuend'' and the ''subtrahend''. As with addition, subtraction can have a number of interpretations, such as: *''separating'' ("Tom has 8 apples. He gives away 3 apples. How many does he have left?") *''finding the difference'' ("Tom has 8 apples. Jane has 3 fewer apples than Tom. How many does Jane have?") *''combining'' ("Tom has 8 apples. Three of the apples are green and the rest are red. How many are red?") *and sometimes ''joining'' ("Tom had some apples. Jane gave him 3 more apples, so now he has 8 apples. How many did he start with?"). As with addition, there are other possible interpretations, such as ''motion''. Symbolically, the
minus sign The plus and minus signs, and , are mathematical symbols used to represent the notions of positive and negative, respectively. In addition, represents the operation of addition, which results in a sum, while represents subtraction, resul ...
("−") represents the subtraction operation. So, the statement "five minus three equals two" is also written as . In elementary arithmetic, subtraction uses smaller positive numbers for all values to produce simpler solutions. Unlike addition, subtraction is not commutative, so the order of numbers in the operation might change the result. Therefore, each number is provided with a different distinguishing name. The first number (5 in the previous example) is formally defined as the ''minuend'' and the second number (3 in the previous example) as the ''subtrahend''. The value of the minuend is larger than the value of the subtrahend so that the result is a positive number, but a smaller value of the minuend will result in
negative number In mathematics, a negative number represents an opposite. In the real number system, a negative number is a number that is less than zero. Negative numbers are often used to represent the magnitude of a loss or deficiency. A debt that is owed ma ...
s. There are several methods to accomplish subtraction. The method which in the
United States The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country Continental United States, primarily located in North America. It consists of 50 U.S. state, states, a Washington, D.C., ...
is referred to as traditional mathematics teaches elementary school students to subtract using methods suitable for hand calculation. The particular method used varies from country to country, and within a country, different methods are in fashion at different times. Reform mathematics is distinguished generally by the lack of preference for any specific technique, replaced by guiding 2nd-grade students to invent their own methods of computation, such as using properties of negative numbers in the case of TERC. American schools currently teach a method of subtraction using borrowing and a system of markings called crutches. Although a method of borrowing had been known and published in textbooks prior, apparently the crutches are the invention of William A. Browell, who used them in a study in November 1937. This system caught on rapidly, displacing the other methods of subtraction in use in America at that time. Students in some European countries are taught, and some older Americans employ, a method of subtraction called the Austrian method, also known as the additions method. There is no borrowing in this method. There are also crutches (markings to aid the memory) which vary according to country. In the method of borrowing, a subtraction such as will accomplish the ones-place subtraction of 9 from 6 by borrowing a 10 from 80 and adding it to the 6. The problem is thus transformed into effectively. This is indicated by striking through the 8, writing a small 7 above it, and writing a small 1 above the 6. These markings are called ''crutches''. The 9 is then subtracted from 16, leaving 7, and the 30 from the 70, leaving 40, or 47 as the result. In the additions method, a 10 is borrowed to make the 6 into 16, in preparation for the subtraction of 9, just as in the borrowing method. However, the 10 is not taken by reducing the minuend, rather one augments the subtrahend. Effectively, the problem is transformed into . Typically a crutch of a small one is marked just below the subtrahend digit as a reminder. Then the operations proceed: 9 from 16 is 7; and 40 (that is, ) from 80 is 40, or 47 as the result. The additions method seems to be taught in two variations, which differ only in presentation. Continuing the example of , the first variation attempts to subtract 9 from 6, and then 9 from 16, borrowing a 10 by marking near the digit of the subtrahend in the next column. The second variation attempts to find a digit which, when added to 9, gives 6, and recognizing that is not possible, gives 16, and carrying the 10 of the 16 as a one marking near the same digit as in the first method. The markings are the same; it is just a matter of preference as to how one explains its appearance. As a final caution, the borrowing method can become complicated in cases such as , where a borrow cannot be made immediately, and must be obtained by reaching across several columns. In this case, the minuend is effectively rewritten as , by taking a 100 from the hundreds, making ten 10s from it, and immediately borrowing that down to nine 10s in the tens column and finally placing a 10 in the ones column.


Example

To find the difference between the numbers 792 and 308, one must start with the ones-column, in which 2 is smaller than 8, so we must borrow 10 from 90, making 90 become 80. We add this 10 to 2, which changes the problem to 12 - 8, which is 4. Next is the tens-column. Since we took 10 from 90, it is now 80, which means we must find the difference of 80 and 0, which is just 80. Next is the hundreds-column. The difference of 700 and 300 is 400. The algorithm is completed and yields the result: :792 - 308 = 484


Multiplication

Multiplication is a function of repeated addition. When two numbers are multiplied together, the result is called a ''product''. The two numbers being multiplied together are called ''factors'', with ''multiplicand'' and ''multiplier'' also used.


Multiplying two natural numbers

Suppose there are five red bags, each one containing three apples. Getting an empty green bag, the apples from all the five red bags are put into the empty green bag. Now the green bag will have fifteen apples. Thus, the product of five and three is fifteen. This can also be stated as "five times three is fifteen" or "five times three equals fifteen" or "fifteen is the product of five and three". Multiplication can be seen to be a form of repeated addition: the first factor indicates how many times the second factor occurs in repeated addition; the final sum being the product. Multiplication is represented by the ''multiplication sign'': ×, as well as the asterix: * and the parentheses: (). So the statement "five times three equals fifteen" is written as "5 x 3 = 15", "5 * 3 = 15", "(5)(3) = 15". In some countries, and in more advanced arithmetic, other multiplication signs are used, e.g. . In some situations, especially in
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
, where numbers can be symbolized with letters, the multiplication symbol may be omitted; e.g. ''xy'' means . The order in which two numbers are multiplied does not matter. For example, three times four equals four times three. This is called the commutative property of multiplication. To multiply a pair of digits using the table, find the intersection of the row of the first digit with the column of the second digit: the row and the column intersect at a square containing the product of the two digits. Most pairs of digits produce two-digit numbers. In the multiplication algorithm the tens-digit of the product of a pair of digits is called the " carry digit".


Example of a multiplication algorithm for a single-digit factor

Using the number 729 and 3, starting on the ones-column, the product of 9 and 3 are 27. 7 is written under the ones-column and 2 is written above the tens-column as a carry digit. Next, the tens-column. The product of 2 and 3 is 6, and the carry digit adds 2 to 6, so 8 is written under the tens-column. Next, the hundreds-column. The product of 7 and 3 is 21, and since this is the last digit, 2 will not be written as a carry digit, but instead beside the 1. No digits of the multiplicand have been left unmultiplied, so the algorithm finishes, yielding the following equation as a result: :3 \times 729 = 2187


Example of a multiplication algorithm for multiple-digit factors

Let our objective be to find the product of two numbers, 789 and 345. First part, Starting with the ones-column, the product of 789 and 5 is 3945. Then the tens-column. We are using the multiplier 4, which is in the tens-digit. This means that we are using the multiplier 40, not 4. We must add a 0 at the end of the answer because of this. The product of 789 and 40 is 31560. Next, the hundreds-column. Since we are using the multiplier 3 and that is in the hundreds-digit, that means it is the multiplier 300, and so the product of 789 and 300 is 236700. Second part, Now we have all of our products. To find the total product of 789 and 345, we must find the sum of all of our products. The answer to the example is :789 \times 345 = 272205.


Division

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, especially in elementary
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th ...
, division is an arithmetic operation which is the inverse of
multiplication Multiplication (often denoted by the Multiplication sign, cross symbol , by the mid-line #Notation and terminology, dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four Elementary arithmetic, elementary Op ...
. Specifically, given a number ''a'' and a non-zero number ''b'', if another number ''c'' times ''b'' equals ''a'', that is: :c \times b = a then ''a'' divided by ''b'' equals ''c''. That is: :\frac ab = c For instance, :\frac 63 = 2 since :2 \times 3 = 6. In the above expression, ''a'' is called the dividend, ''b'' the divisor and ''c'' the quotient. Division by zero — where the divisor is zero — is said to be either meaningless or undefined in elementary arithmetic.


Division notation

Division is most often shown by placing the ''dividend'' over the ''divisor'' with a horizontal line, also called a vinculum, between them. For example, ''a'' divided by ''b'' is written as: :\frac ab This can be read out loud as "''a'' divided by ''b''" or "''a'' over ''b''". A way to express division all on one line is to write the ''dividend'', then a
slash Slash may refer to: * Slash (punctuation), the "/" character Arts and entertainment Fictional characters * Slash (Marvel Comics) * Slash (''Teenage Mutant Ninja Turtles'') Music * Harry Slash & The Slashtones, an American rock band * Nash ...
, then the ''divisor'', as follows: :a/b This is the usual way to specify division in most computer
programming language A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language. The description of a programming ...
s since it can easily be typed as a simple sequence of characters. A handwritten or typographical variation — which is halfway between these two forms — uses a solidus (fraction slash) but elevates the dividend and lowers the divisor, as follows: : Any of these forms can be used to display a
fraction A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
. A ''common fraction'' is a division expression where both dividend and divisor are
number A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual number ...
s (although typically called the ''numerator'' and ''denominator''), and there is no implication that the division needs to be evaluated further. A more basic way to show division is to use the obelus (or division sign) in this manner: :a \div b. This form is infrequent except in basic arithmetic. The obelus is also used alone to represent the division operation itself, for instance, as a label on a key of a
calculator An electronic calculator is typically a portable electronic device used to perform calculations, ranging from basic arithmetic to complex mathematics. The first solid-state electronic calculator was created in the early 1960s. Pocket-sized ...
. In some non-
English English usually refers to: * English language * English people English may also refer to: Peoples, culture, and language * ''English'', an adjective for something of, from, or related to England ** English national ...
-speaking cultures, "''a'' divided by ''b''" is written . However, in English usage the colon is restricted to expressing the related concept of
ratio In mathematics, a ratio shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
s (then "''a'' is to ''b''"). With a knowledge of
multiplication tables In mathematics, a multiplication table (sometimes, less formally, a times table) is a mathematical table used to define a multiplication operation for an algebraic system. The decimal multiplication table was traditionally taught as an essen ...
, two numbers can be divided on paper using the method of long division. An abbreviated version of long division, short division, can be used for smaller divisors as well. A less systematic method — but which leads to a more holistic understanding of division in general — involves the concept of
chunking Chunking may mean: * Chunking (division), an approach for doing simple mathematical division sums, by repeated subtraction * Chunking (computational linguistics), a method for parsing natural language sentences into partial syntactic structures * ...
. By allowing one to subtract more multiples from the partial remainder at each stage, more free-form methods can be developed as well. Alternatively, if the dividend has a
fraction A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
al part (expressed as a decimal fraction), one can continue the algorithm past the ones' place as far as desired. If the divisor has a decimal fractional part, one can restate the problem by moving the decimal to the right in both numbers until the divisor has no fraction. To divide by a fraction, one can simply multiply by the reciprocal (reversing the position of the top and bottom parts) of that fraction, For example: :\textstyle :\textstyle


Example

Let us find the quotient of 272 and 8. Starting with the hundreds-digit, 2 is not divisible by 8. So, we must go to the tens-digit, 7, and add 20 to 7, to get 27. In order to divide 27 and 8, we must subtract the dividend by the Greatest Common Divisor (GCD), that is, the largest positive
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
that
divides In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible b ...
into each of the integers. The GCD of 27 and 8 is 24. Subtracting 24 from 27 gives you 3, so 3 should be written under the tens-column. 8 is bigger than 3, so we must go to the ones-digit to continue the division, in which the number is 2. We put the 3 ahead of the 2 and get 32, which is divisible by 8, and so the quotient of 32 and 8 is 4. 4 is written under the ones-column. There are no other digits remaining, and we can check that 34 is truly the answer by multiplying the quotient with the divisor, 8, to get 272. Thus, the algorithm is complete, yielding the result: :272 \div 8 = 34


Educational standards

Local standards usually define the educational methods and content included in the elementary level of instruction. In the United States and Canada, controversial subjects include the amount of calculator usage compared to manual computation and the broader debate between traditional mathematics and reform mathematics. In the United States, the 1989
NCTM Founded in 1920, The National Council of Teachers of Mathematics (NCTM) is a professional organization for schoolteachers of mathematics in the United States. One of its goals is to improve the standards of mathematics in education. NCTM holds an ...
standards led to curricula which de-emphasized or omitted much of what was considered to be elementary arithmetic in elementary school and replaced it with emphasis on topics traditionally studied in college such as
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
,
statistics Statistics (from German: '' Statistik'', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, indust ...
and problem solving, and non-standard computation methods unfamiliar to most adults.


Tools

The
abacus The abacus (''plural'' abaci or abacuses), also called a counting frame, is a calculating tool which has been used since ancient times. It was used in the ancient Near East, Europe, China, and Russia, centuries before the adoption of the Hi ...
is an early mechanical device for performing elementary arithmetic, which is still used in many parts of
Asia Asia (, ) is one of the world's most notable geographical regions, which is either considered a continent in its own right or a subcontinent of Eurasia, which shares the continental landmass of Afro-Eurasia with Africa. Asia covers an are ...
. Modern calculating tools that perform elementary arithmetic operations include
cash register A cash register, sometimes called a till or automated money handling system, is a mechanical or electronic device for registering and calculating transactions at a point of sale. It is usually attached to a drawer for storing cash and other ...
s, electronic calculators, and
computer A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations ( computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These prog ...
s.


Generalizations

Elementary arithmetic is typically used with
real numbers In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every re ...
; the set of numbers is given algebraic structure by the two operations (addition and multiplication) and their inverses (subtraction and division). In general, a set of objects together with notions of addition, subtraction, multiplication, and division which behave in expected ways (obeying the
associative In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
and distributive properties for example) is called a
field (mathematics) In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure whic ...
. In general, fields can look and behave differently from the
real numbers In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every re ...
, but the basic rules of arithmetic still hold. For example, modular integer arithmetic modulo a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
is a field. Relaxing the rules of arithmetic allows the creation of numerous other algebraic objects such as
division ring In algebra, a division ring, also called a skew field, is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicative inverse, that is, an element ...
s and integral domains.


See also

* Early numeracy * Elementary mathematics * Chunking (division) *
Plus and minus signs The plus and minus signs, and , are mathematical symbols used to represent the notions of positive and negative, respectively. In addition, represents the operation of addition, which results in a sum, while represents subtraction, resul ...
* Division by zero *
Real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
*
Imaginary number An imaginary number is a real number multiplied by the imaginary unit , is usually used in engineering contexts where has other meanings (such as electrical current) which is defined by its property . The square of an imaginary number is . F ...


References


External links


"A Friendly Gift on the Science of Arithmetic"
is an Arabic document from the 15th century that talks about basic arithmetic. {{Authority control Mathematics education