HOME

TheInfoList



OR:

An electron acceptor is a chemical entity that accepts
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
s transferred to it from another compound. It is an
oxidizing agent An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ). In other words, an oxi ...
that, by virtue of its accepting electrons, is itself reduced in the process. Electron acceptors are sometimes mistakenly called electron receptors. Typical oxidizing agents undergo permanent chemical alteration through
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
or ionic reaction chemistry, resulting in the complete and irreversible transfer of one or more electrons. In many chemical circumstances, however, the transfer of electronic charge from an electron donor may be only fractional, meaning an electron is not completely transferred, but results in an electron resonance between the donor and acceptor. This leads to the formation of charge transfer complexes in which the components largely retain their chemical identities. The electron accepting power of an acceptor molecule is measured by its electron affinity which is the energy released when filling the lowest unoccupied
molecular orbital In chemistry, a molecular orbital is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of find ...
(LUMO). The energy required to remove one electron from the electron donor is its ionization energy (I). The energy liberated by attachment of an electron to the electron acceptor is the negative of its electron affinity (A). The overall system energy change (ΔE) for the charge transfer is then E=I-A\,. For an exothermic reaction, the energy liberated is of interest and is equal to -E=A-I\,. In
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a natural science that covers the elements that make up matter to the compounds made of atoms, molecules and ions: their composition, structure, proper ...
, a class of electron acceptors that acquire not just one, but a set of two paired electrons that form a
covalent bond A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between ato ...
with an electron donor molecule, is known as a Lewis acid. This phenomenon gives rise to the wide field of Lewis acid-base chemistry. The driving forces for electron donor and acceptor behavior in chemistry is based on the concepts of electropositivity (for donors) and electronegativity (for acceptors) of atomic or molecular entities.


Examples

Examples of electron acceptors include
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
, nitrate,
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
(III),
manganese Manganese is a chemical element with the Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of ...
(IV), sulfate,
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
, or in some microorganisms the
chlorinated In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers ...
solvents such as tetrachloroethylene (PCE), trichloroethylene (TCE), dichloroethene (DCE), and
vinyl chloride Vinyl chloride is an organochloride with the formula H2C=CHCl. It is also called vinyl chloride monomer (VCM) or chloroethene. This colorless compound is an important industrial chemical chiefly used to produce the polymer polyvinyl chloride (PVC ...
(VC). These reactions are of interest not only because they allow organisms to obtain energy, but also because they are involved in the natural
biodegradation Biodegradation is the breakdown of organic matter by microorganisms, such as bacteria and fungi. It is generally assumed to be a natural process, which differentiates it from composting. Composting is a human-driven process in which biodegra ...
of organic contaminants. When clean-up professionals use monitored natural attenuation to clean up contaminated sites, biodegradation is one of the major contributing processes. In
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary ...
, a ''terminal electron acceptor'' refers to either the last compound to receive an electron in an
electron transport chain An electron transport chain (ETC) is a series of protein complexes and other molecules that transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples ...
, such as oxygen during
cellular respiration Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor such as oxygen to produce large amounts of energy, to drive the bulk production of ATP. Cellular respiration may be des ...
, or the last cofactor to receive an electron within the electron transfer domain of a reaction center during
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
. All organisms obtain energy by transferring electrons from an electron donor to an electron acceptor. During this process the electron acceptor is reduced and the electron donor is
oxidized Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
.


See also

*
Acceptor (semiconductors) In semiconductor physics, an acceptor is a dopant atom that when substituted into a semiconductor lattice forms a p-type region. When silicon (Si), having four valence electrons, is doped with elements from group III of the periodic table, ...
* Redox reactions *
Semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...


References

{{Reflist


External links


Electron acceptor definition at United States Geological Survey website
Electrochemical concepts