Purpose
The diving regulator is a mechanism which reduces the pressure of the supply of breathing gas and provides it to the diver at approximately ambient pressure. The gas may be supplied on demand, when the diver inhales, or as a constant flow past the diver inside the helmet or mask, from which the diver uses what is necessary, while the remainder goes to waste. The gas may be provided directly to the diver, or to a rebreather circuit, to make up for used gas and volume changes due to depth variations. Gas supply may be from a high-pressure scuba cylinder carried by the diver, or from a surface supply through a hose connected to a compressor or high pressure storage system.Types
Open circuit demand valve
A demand valve detects the pressure drop when the diver starts inhaling and supplies the diver with a breath of gas at ambient pressure. When the diver stops inhaling, the demand valve closes to stop the flow. The demand valve has a chamber, which in normal use contains breathing gas at ambient pressure, which is connected to a bite-grip mouthpiece, a full-face mask, or a diving helmet, either direct coupled or connected by a flexible low-pressure hose. On one side of the chamber is a flexible diaphragm (mechanics), diaphragm to sense the pressure difference between the gas in the chamber on one side and the surrounding water on the other side, and control the operation of the valve which supplies pressurised gas into the chamber. This is done by a mechanical system linking the diaphragm to a valve which is opened to an extent proportional to the displacement of the diaphragm from the closed position. The pressure difference between the inside of the mouthpiece and the ambient pressure outside the diaphragm required to open the valve is known as the cracking pressure. This cracking pressure difference is usually negative relative to ambient, but may be slightly positive on a positive pressure regulator (a regulator that maintains a pressure inside the mouthpiece, mask or helmet, which is slightly greater than the ambient pressure). Once the valve has opened, gas flow should continue at the smallest stable pressure difference reasonably practicable while the diver inhales, and should stop as soon as gas flow stops. Several mechanisms have been devised to provide this function, some of them extremely simple and robust, and others somewhat more complex, but more sensitive to small pressure changes. The diaphragm is protected by a cover with holes or slits through which outside water can enter freely. This cover reduces sensitivity of the diaphragm to water turbulence and dynamic pressure due to movement, which might otherwise trigger gas flow when it is not needed. When the diver starts to inhale, the removal of gas from the casing lowers the pressure inside the chamber, and the external water pressure moves the diaphragm inwards operating a lever which lifts the valve off its seat, releasing gas into the chamber. The inter-stage gas, at about over ambient pressure, expands through the valve orifice as its pressure is reduced to ambient and supplies the diver with more gas to breathe. When the diver stops inhaling the chamber fills until the external pressure is balanced, the diaphragm returns to its rest position and the lever releases the valve to be closed by the valve spring and gas flow stops. When the diver exhales, one-way valves made from a flexible air-tight material flex outwards under the pressure of the exhalation, letting gas escape from the chamber. They close, making a seal, when the exhalation stops and the pressure inside the chamber reduces to ambient pressure. The vast majority of demand valves are used on open circuit breathing apparatus, which means that the exhaled gas is discharged into the surrounding environment and lost. Reclaim valves can be fitted to helmets to allow the used gas to be returned to the surface for reuse after removing the carbon dioxide and making up the oxygen. This process, referred to as "push-pull", is technologically complex and expensive and is only used for deep commercial diving on heliox mixtures, where the saving on helium compensates for the expense and complications of the system, and for diving in contaminated water, where the gas is not reclaimed, but the system reduces the risk of contaminated water leaking into the helmet through an exhaust valve.Open circuit free-flow regulator
These are generally used in surface supply diving with free-flow masks and helmets. They are usually a large high-flow rated industrial gas regulator that is manually controlled at the gas panel on the surface to the pressure required to provide the desired flow rate to the diver. Free flow is not normally used on scuba equipment as the high gas flow rates are inefficient and wasteful. In constant-flow regulators the pressure regulator provides a constant reduced pressure, which provides gas flow to the diver, which may be to some extent controlled by an adjustable orifice controlled by the diver. These are the earliest type of breathing set flow control. The diver must physically open and close the adjustable supply valve to regulate flow. Constant flow valves in an open circuit breathing set consume gas less economically than demand valve regulators because gas flows even when it is not needed, and must flow at the rate required for peak inhalation. Before 1939, self contained diving and industrial open circuit breathing sets with constant-flow regulators were designed by Le Prieur, but did not get into general use due to very short dive duration. Design complications resulted from the need to put the second-stage flow control valve where it could be easily operated by the diver.Reclaim regulators
The cost of breathing gas containing a high fraction of helium is a significant part of the cost of Commercial offshore diving, deep diving operations, and can be reduced by recovering the breathing gas for recycling. A reclaim helmet is provided with a return line in the diver's umbilical, and exhaled gas is discharged to this hose through a reclaim regulator, which ensures that gas pressure in the helmet cannot fall below the ambient pressure. The gas is processed at the surface in the Saturation diving#Gas reclaim systems, helium reclaim system by filtering, Carbon dioxide scrubber, scrubbing and Booster pump, boosting into Gas cylinder, storage cylinders until needed. The oxygen content may be adjusted when appropriate. The same principle is used in built-in breathing systems used to vent Hyperbaric medicine, oxygen-rich treatment gases from a hyperbaric chamber, though those gases are generally not reclaimed. A diverter valve is provided to allow the diver to manually switch to open circuit if the reclaim valve malfunctions, and an underpressure flood valve allows water to enter the helmet to avoid a squeeze if the reclaim valve fails suddenly, allowing the diver time to switch to open circuit without injury. Reclaim valves for deep diving may use two stages to give smoother flow and lower work of breathing. The reclaim regulator works on a similar principle to the demand regulator, in that it allows flow only when the pressure difference between the interior of the helmet and the ambient water opens the valve, but uses the upstream over-pressure to activate the valve, where the demand valve uses downstream underpressure. Reclaim regulators are also sometimes used for hazmat diving to reduce the risk of backflow of contaminated water through the exhaust valves into the helmet. In this application there would not be an underpressure flood valve, but the pressure differences and the squeeze risk are relatively low. The breathing gas in this application would usually be air and would not actually be recycled.Built-in breathing systems
Rebreather regulators
Rebreather systems used for diving recycle most of the breathing gas, but are not based on a demand valve system for their primary function. Instead, the breathing loop is carried by the diver and remains at ambient pressure while in use. Regulators used in scuba rebreathers are described below. The Rebreather#Automatic diluent valve (ADV), automatic diluent valve (ADV) is used in a rebreather to add gas to the loop to compensate automatically for volume reduction due to pressure increase with greater depth or to make up gas lost from the system by the diver exhaling through the nose while clearing the mask or as a method of flushing the loop . They are often provided with a purge button to allow manual flushing of the loop. The ADV is virtually identical in construction and function to the open circuit demand valve, but does not have an exhaust valve. Some passive semi-closed circuit rebreathers use the ADV to add gas to the loop to compensate for a portion of the gas discharged automatically during the breathing cycle as a way of maintaining a suitable oxygen concentration. The Rebreather diving#Bailout valve, bailout valve (BOV) is an open circuit demand valve built into a rebreather mouthpiece or other part of the breathing loop. It can be isolated while the diver is using the rebreather to recycle breathing gas, and opened, while at the same time isolating the breathing loop, when a problem causes the diver to bail out onto open circuit. The main distinguishing feature of the BOV is that the same mouthpiece is used for open and closed-circuit, and the diver does not have to shut the dive/surface valve (DSV), remove it from their mouth, and find and insert the bailout demand valve in order to bail out onto open circuit. Although costly, this reduction in critical steps makes the integrated BOV a significant safety advantage, particularly when there is a high partial pressure of carbon dioxide in the loop, as hypercapnia can make it difficult or impossible for the diver to hold their breath even for the short period required to swap mouthpieces. Rebreather#Constant mass flow gas addition, Constant mass flow addition valves are used to supply a Rebreather#Constant mass flow, constant mass flow of fresh gas to an active type semi-closed rebreather to replenish the gas used by the diver and to maintain an approximately constant composition of the loop mix. Two main types are used: the fixed orifice and the adjustable orifice (usually a needle valve). The constant mass flow valve is usually supplied by a gas regulator that is isolated from the ambient pressure so that it provides an absolute pressure regulated output (not compensated for ambient pressure). This limits the depth range in which constant mass flow is possible through the orifice, but provides a relatively predictable gas mixture in the breathing loop. An over-pressure relief valve in the first stage is used to protect the output hose. Unlike most other diving regulators, constant mass flow orifices do not control the downstream pressure, but they do regulate the flow rate. Manual and electronically controlled addition valves are used on manual and electronically controlled closed circuit rebreathers (mCCR, eCCR) to add oxygen to the loop to maintain oxygen partial pressure set-point. A manually or electronically controlled valve is used to release oxygen from the outlet of a standard scuba regulator first stage into the breathing loop. An over-pressure relief valve on the first stage is necessary to protect the hose. Strictly speaking, these are not pressure regulators, they are flow control valves.History
The first recorded demand valve was Timeline of underwater technology#1838, invented in 1838 in France and forgotten in the next few years; another workable demand valve was not invented until 1860. On 14 November 1838, Dr. Manuel Théodore Guillaumet of Argentan, Normandy, France, filed a patent for a twin-hose demand regulator; the diver was provided air through pipes from the surface to a back mounted demand valve and from there to a mouthpiece. The exhaled gas was vented to the side of the head through a second hose. The apparatus was demonstrated to and investigated by a committee of the French Academy of Sciences: On 19 June 1838, in London, William Edward Newton filed a patent (no. 7695: "Diving apparatus") for a diaphragm-actuated, twin-hose demand valve for divers. However, it is believed that Mr. Newton was merely filing a patent on behalf of Dr. Guillaumet. In 1860 a Mining engineering, mining engineer from Espalion (France), Benoît Rouquayrol, invented a demand valve with an iron air reservoir to let miners breathe in flooded mines. He called his invention ('regulator'). In 1864 Rouquayol met the French Navy, French Imperial Navy officer Auguste Denayrouze and they worked together to adapt Rouquayrol's regulator to diving. The Rouquayrol-Denayrouze apparatus was mass-produced with some interruptions from 1864 to 1965. As of 1865 it was acquired as a standard by the French Imperial Navy, but never was entirely accepted by the French divers because of a lack of safety and autonomy. In 1926 Maurice Fernez and Yves Le Prieur patented a hand-controlled constant flow regulator (not a demand valve), which used a Full face diving mask, full-face mask (the air escaping from the mask at Diving regulator#Constant flow, constant flow). In 1937 and 1942 the French inventor, Georges Commeinhes from Alsace, patented a diving demand valve supplied with air from two gas cylinders through a full-face mask. Commeinhes died in 1944 during the liberation of Strasbourg and his invention was soon forgotten. The Commeinhes demand valve was an adaptation of the Rouquayoul-Denayrouze mechanism, not as compact as was the Cousteau-Gagnan apparatus. It was not until December 1942 that the demand valve was developed to the form which gained widespread acceptance. This came about after French naval officer Jacques-Yves Cousteau and engineer Émile Gagnan met for the first time in Paris. Gagnan, employed at Air Liquide, had miniaturized and adapted a Rouquayrol-Denayrouze regulator used for gas generators following severe fuel restrictions due to the German military administration in occupied France during World War II, German occupation of France; Cousteau suggested it be adapted for diving, which in 1864 was its original purpose. The single hose regulator, with a mouth held demand valve supplied with low pressure gas from the cylinder valve mounted first stage, was invented by Australian Ted Eldred in the early 1950s in response to patent restrictions and stock shortages of the Cousteau-Gagnan apparatus in Australia. In 1951 E. R. Cross invented the "Sport Diver," one of the first American-made single-hose regulators. Cross' version is based on the oxygen system used by pilots. Other early single-hose regulators developed during the 1950s include Rose Aviation's "Little Rose Pro," the "Nemrod Snark" (from Spain), and the Sportsways "Waterlung," designed by diving pioneer Sam LeCocq in 1958. In France, in 1955, a patent was taken out by Bronnec & Gauthier for a single hose regulator, later produced as the Cristal Explorer. The "Waterlung" would eventually become the first single-hose regulator to be widely adopted by the diving public. Over time, the convenience and performance of improved single hose regulators would make them the industry standard. Performance still continues to be improved by small increments, and adaptations have been applied to rebreather technology. The single hose regulator was later adapted for surface supplied diving in lightweight helmets and full-face masks in the tradition of the Rouquayrol-Denayrouze equipment to economise on gas usage. By 1969 Kirby-Morgan had developed a full-face mask - the KMB-8 Bandmask - using a single hose regulator. This was developed into the Kirby-Morgan SuperLite-17B by 1976 Secondary (octopus) demand valves, submersible pressure gauges and low pressure inflator hoses were added to the first stage. In 1994 a reclaim system was developed in a joint project by Kirby-Morgan and Divex to recover expensive helium mixes during deep operations.Mechanism and function
Both free-flow and demand regulators use mechanical feedback of the downstream pressure to control the opening of a valve which controls gas flow from the upstream, high-pressure side, to the downstream, low-pressure side of each stage. Flow capacity must be sufficient to allow the downstream pressure to be maintained at maximum demand, and sensitivity must be appropriate to deliver maximum required flow rate with a small variation in downstream pressure, and for a large variation in supply pressure. Open circuit scuba regulators must also deliver against a variable ambient pressure. They must be robust and reliable, as they are life-support equipment which must function in the relatively hostile seawater environment. Diving regulators use mechanically operated valves. In most cases there is ambient pressure feedback to both first and second stage, except where this is avoided to allow constant mass flow through an orifice in a rebreather, which requires a constant upstream pressure. The parts of a regulator are described here as the major functional groups in downstream order as following the gas flow from the diving cylinder to its final use.Connection to the diving cylinder
The first-stage of the scuba regulator will usually be connected to the Scuba cylinder valve, cylinder valve by one of two standard types of fittings. The CGA 850 connector, also known as an international connector, which uses a yoke clamp, or a Deutsches Institut für Normung, DIN screw fitting. There are also European standards for scuba regulator Diving regulator#Other connection types, connectors for gases other than air, and Diving regulator#adapters, adapters to allow use of regulators with cylinder valves of a different connection type. CGA 850 Yoke connectors (sometimes called A-clamps from their shape) are the most popular regulator connection in North America and several other countries. They clamp the high pressure inlet opening of the regulator against the outlet opening of the cylinder valve, and are sealed by an O-ring in a groove in the contact face of the cylinder valve. The user screws the clamp in place finger-tight to hold the metal surfaces of cylinder valve and regulator first stage in contact, compressing the o-ring between the radial faces of valve and regulator. When the valve is opened, gas pressure presses the O-ring against the outer cylindrical surface of the groove, completing the seal. The diver must take care not to screw the yoke down too tightly, or it may prove impossible to remove without tools. Conversely, failing to tighten sufficiently can lead to O-ring extrusion under pressure and a major loss of breathing gas. This can be a serious problem if it happens when the diver is at depth. Yoke fittings are rated up to a maximum of 240 bar working pressure. The DIN fitting is a type of screw-in connection to the cylinder valve. The DIN system is less common worldwide, but has the advantage of withstanding greater pressure, up to 300 bar, allowing use of high-pressure steel cylinders. They are less susceptible to blowing the O-ring seal if banged against something while in use. DIN fittings are the standard in much of Europe and are available in most countries. The DIN fitting is considered more secure and therefore safer by many technical divers. It is more compact than the yoke fitting and less exposed to impact with an overhead.Conversion kits
Adaptors
Adaptors are available to allow connection of DIN regulators to yoke cylinder valves (A-clamp or yoke adaptor), and to connect yoke regulators to DIN cylinder valves. There are two types of adaptors for DIN valves: plug adaptors and block adaptors. Plug adaptors are screwed into a 5-thread DIN valve socket, are rated for 232/240 bar, and can only be used with valves which are designed to accept them. These can be recognised by a dimple recess opposite to the outlet opening, used to locate the screw of an A-clamp. Block adaptors are generally rated for 200 bar, and can be used with almost any 200 bar 5-thread DIN valve. A-clamp or yoke adaptors comprise a yoke clamp with a DIN socket in line. They are slightly more vulnerable to O-ring extrusion than integral yoke clamps, due to greater leverage on the first stage regulator.Single-hose demand regulators
Most contemporary diving regulators are single-hose two-stage demand regulators. They consist of a first-stage regulator and a second-stage demand valve connected by a low pressure hose to transfer breathing gas, and allow relative movement within the constraints of hose length and flexibility. The first stage is mounted to the cylinder valve or manifold via one of the standard connectors (Yoke or DIN), and reduces cylinder pressure to an intermediate pressure, usually about higher than the ambient pressure, also called interstage pressure, medium pressure or low pressure. A balanced regulator first stage automatically keeps a constant pressure difference between the interstage pressure and the ambient pressure even as the tank pressure drops with consumption. The balanced regulator design allows the first stage orifice to be as large as needed without incurring performance degradation as a result of changing tank pressure. The first stage regulator body generally has several low-pressure outlets (ports) for second-stage regulators and BCD and dry suit inflators, and one or more high-pressure outlets, which allow a submersible pressure gauge (SPG), gas-integrated diving computer or remote pressure tranducer to read the cylinder pressure. One low-pressure port with a larger bore may be designated for the primary second stage as it will give a higher flow at maximum demand for lower work of breathing. The mechanism inside the first stage can be of the diaphragm or piston type, and can be balanced or unbalanced. Unbalanced regulators produce an interstage pressure which varies slightly as the cylinder pressure changes and to limit this variation the high-pressure orifice size is small, which decreases the maximum capacity of the regulator. A balanced regulator maintains a constant interstage pressure difference for all cylinder pressures. The second stage, or demand valve reduces the pressure of the interstage air supply to ambient pressure on demand from the diver. The operation of the valve is triggered by a drop in downstream pressure as the diver breathes in. In an upstream valve, the velve is held closed by the interstage pressure and opens by moving into the flow of gas. They are often made as tilt-valves, which are mechanically extremely simple and reliable, but are not amenable to fine tuning. Most modern demand valves use a downstream valve mechanism, where the valve poppet moves in the same direction as the flow of gas to open and is kept closed by a spring. The poppet is lifted away from the crown by a lever operated by the diaphragm. Two patterns are commonly used. One is the classic push-pull arrangement, where the actuating lever goes onto the end of the valve shaft and is held on by a nut. Any deflection of the lever is converted to an axial pull on the valve shaft, lifting the seat off the crown and allowing air to flow. The other is the barrel poppet arrangement, where the poppet is enclosed in a tube which crosses the regulator body and the lever operates through slots in the sides of the tube. The far end of the tube is accessible from the side of the casing and a spring tension adjustment screw may be fitted for limited diver control of the cracking pressure. This arrangement also allows relatively simple pressure balancing of the second stage. A downstream valve will function as an over-pressure valve when the inter-stage pressure is raised sufficiently to overcome the spring pre-load. If the first stage leaks and the inter-stage over-pressurizes, the second stage downstream valve opens automatically. If the leak is bad this could result in a "freeflow", but a slow leak will generally cause intermittent "popping" of the DV, as the pressure is released and slowly builds up again. If the first stage leaks and the inter-stage over-pressurizes, the second stage upstream valve will not release the excess pressure, This might hinder the supply of breathing gas and possibly result in a ruptured hose or the failure of another second stage valve, such as one that inflates a buoyancy device. When a second stage upstream valve is used a relief valve will be included by the manufacturer on the first stage regulator to protect the hose. If a shut-off valve is fitted between the first and second stages, as is found on scuba bailout systems used for commercial diving and in some technical diving configurations, the demand valve will normally be isolated and unable to function as a relief valve. In this case an overpressure valve must be fitted to the first stage. They are available as aftermarket accessories which can be screwed into any available low pressure port on the first stage. Some demand valves use a small, sensitive pilot valve to control the opening of the main valve. The Poseidon ''Jetstream'' and ''Xstream'' and Oceanic ''Omega'' second stages are examples of this technology. They can produce very high flow rates for a small pressure differential, and particularly for a relatively small cracking pressure. They are generally more complicated and expensive to service. Exhaled gas leaves the demand valve housing through one or two exhaust ports. Exhaust valves are necessary to prevent the diver inhaling water, and to allow a negative pressure difference to be induced over the diaphragm to operate the demand valve. The exhaust valves should operate at a very small positive pressure difference, and cause as little resistance to flow as reasonably possible, without being cumbersome and bulky. Elastomer mushroom valves serve the purpose adequately. Where it is important to avoid leaks back into the regulator, such as when diving in contaminated water, a system of two sets of valves in series can reduce the risk of contamination. A more complex option which can be used for surface supplied helmets, is to use a reclaim exhaust system which uses a separate flow regulator to control the exhaust which is returned to the surface in a dedicated hose in the umbilical. The exhaust manifold (exhaust tee, exhaust cover, whiskers) is the ducting that protects the exhaust valve(s) and diverts the exhaled air to the sides so that it does not bubble up in the diver's face and obscure the view.Twin hose demand regulators
Performance
The breathing performance of regulators is a measure of the ability of a breathing gas regulator to meet the demands placed on it at varying ambient pressures and under varying breathing loads, for the range of breathing gases it may be expected to deliver. Performance is an important factor in design and selection of breathing regulators for any application, but particularly for underwater diving, as the range of ambient operating pressures and variety of breathing gases is broader in this application. It is desirable that breathing from a regulator requires low effort even when supplying large amounts ofErgonomics
Several factors affect the comfort and effectiveness of diving regulators. Work of breathing has been mentioned, and can be critical to diver performance under high workload and when using dense gas at depth. Mouth-held demand valves may exert forces on the teeth and jaws of the user that can lead to fatigue and pain, occasionally repetitive stress injury, and early rubber mouthpieces often caused an allergic reaction of contact surfaces in the mouth, which has been largely eliminated by the use of hypoallergenic silicone rubber. Various designs of mouthpiece have been developed to reduce this problem. The feel of some mouthpieces on the palate can induce a gag reflex in some divers, while in others it causes no discomfort. The style of the bite surfaces can influence comfort and various styles are available as aftermarket accessories. Personal testing is the usual way to identify what works best for the individual, and in some models the grip surfaces can be moulded to better fit the diver's bite. The lead of the low-pressure hose can also induce mouth loads when the hose is of an unsuitable length or is forced into small radius curves to reach the mouth. This can usually be avoided by careful adjuctment of hose lead and sometimes a different hose length. Regulators supported by helmets and full-face masks eliminate the load on the lips, teeth and jaws, but add mechanical dead space, which can be reduced by using an Orinasal mask, orinasal inner mask to separate the breathing circuit from the rest of the interior air space. This can also help reduce fogging of the viewport, which can seriously restrict vision. Some fogging will still occur, and a means of defogging is necessary. The internal volume of a helmet or full-face mask may exert unbalanced buoyancy forces on the diver's neck, or if compensated by ballast, weight loads when out of the water. The material of some orinasal mask seals and full-face mask skirts can cause allergic reactions, but newer models tend to use hypoallegenic materials and are seldom a problem.Malfunctions and failure modes
Most regulator malfunctions involve improper supply of breathing gas or water leaking into the gas supply. There are two main gas supply failure modes, where the regulator shuts off delivery, which is extremely rare, and free-flow, where the delivery will not stop and can quickly exhaust a scuba supply. ;Inlet filter blockage: The inlet to the cylinder valve may be protected by a sintered filter, and the inlet to the first stage is usually protected by a filter, both to prevent corrosion products or other contaminants in the cylinder from getting into the fine toleranced gaps in the moving parts of the first and second stage and jamming them, either open or closed. If enough dirt gets into these filters they themselves can be blocked sufficiently to reduce performance, but are unlikely to result in a total or sudden catastrophic failure. Sintered bronze filters can also gradually clog with corrosion products if they get wet. Inlet filter blockage will become more noticeable as the cylinder pressure drops. ;Free-flow: Either of the stages may get stuck in the open position, causing a continuous flow of gas from the regulator known as a free-flow. This can be triggered by a range of causes, some of which can be easily remedied, others not. Possible causes include incorrect interstage pressure setting, incorrect second stage valve spring tension, damaged or sticking valve poppet, damaged valve seat, valve freezing, wrong sensitivity setting at the surface and in Poseidon servo-assisted second stages, low interstage pressure. ;Sticking valves:The moving parts in first and second stages have fine tolerances in places, and some designs are more susceptible to contaminants causing friction between the moving parts. this may increase cracking pressure, reduce flow rate, increase work of breathing or induce free-flow, depending on what part is affected. ;Freezing: In cold conditions the cooling effect of gas expanding through a valve orifice may cool either first or second stage sufficiently to cause ice to form. External icing may lock up the spring and exposed moving parts of first or second stage, and freezing of moisture in the air may cause icing on internal surfaces. Either may cause the moving parts of the affected stage to jam open or closed. If the valve freezes closed, it will usually defrost quite rapidly and start working again, and may freeze open soon after. Freezing open is more of a problem, as the valve will then free-flow and cool further in a positive feedback loop, which can normally only be stopped by closing the cylinder valve and waiting for the ice to thaw. If not stopped, the cylinder will rapidly be emptied. If the valve is closed to shut off flow intil the ice has thawed, breathing gas will not be available from that regulator while the valve is closed, and another regulator must be available. ;Intermediate pressure creep: This is a slow leak of the first stage valve, often caused by a worn or damaged valve seat. The effect is for the interstage pressure to rise until either the next breath is drawn, or the pressure exerts more force on the second stage valve than can be resisted by the spring, and the valve opens briefly, often with a popping sound, to relieve the pressure. the frequency of the popping pressure relief depends on the flow in the second stage, the back pressure, the second stage spring tension and the magnitude of the leak. It may range from occasional loud pops to a constant hiss. Underwater the second stage may be damped by the water and the loud pops may become an intermittent or constant stream of bubbles. This is not usually a catastrophic failure mode, but should be fixed as it will get worse, and it wastes gas. ;Gas leaks: Air leaks can be caused by burst or leaky hoses, defective o-rings, blown o-rings, particularly in yoke connectors, loose connections, and several of the previously listed malfunctions. Low pressure inflation hoses may fail to connect properly, or the non-return valve may leak. A burst low pressure hose will usually lose gas faster than a burst high pressure hose, as HP hoses usually have a flow restriction orifice in the fitting that screws into the port, as the submersible pressure gauge does not need high flow, and a slower pressure increase in the gauge hose is less likely to overload the gauge, while the hose to a second stage must provide high peak flow rate to minimize work of breathing. A relatively common o-ring failure occurs when the yoke clamp seal extrudes due to insufficient clamp force or elastic deformation of the clamp by impact with the environment. ;Wet breathing: Wet breathing is caused by water getting into the regulator and compromising breathing comfort and safety. Water can leak into the second stage body through damaged soft parts like torn mouthpieces, damaged exhaust valves and perforated diaphragms, through cracked housings, or through poorly sealing or fouled exhaust valves. ;Excessive work of breathing: High work of breathing can be caused by high inhalation resistance, high exhalation resistance or both. High inhalation resistance can be caused by high cracking pressure, low inter-stage pressure, friction in second stage valve moving parts, excessive spring loading, or sub-optimum valve design. It can usually be improved by servicing and tuning, but some regulators cannot deliver high flow at great depths without high work of breathing. High exhalation resistance is usually due to a problem with the exhaust valves, which can stick, stiffen due to deterioration of the materials, or may have an insufficient flow passage area for the service. Work of breathing increases with gas density, and therefore with depth. Total work of breathing for the diver is a combination of physiological work of breathing and mechanical work of breathing. It is possible for this combination to exceed the capacity of the diver, who can then suffocate due to carbon dioxide toxicity. ;Juddering, shuddering and moaning: This is caused by an irregular and unstable flow from the second stage, It may be caused by a slight positive feedback between flow rate in the second stage body and diaphragm deflection opening the valve, which is not sufficient to cause free-flow, but enough to cause the system to Resonance, hunt. It is more common on high-performance regulators which are tuned for maximum flow and minimum work of breathing, particularly out of the water, and often reduces or resolves when the regulator is immersed and the ambient water damps the movement of the diaphragm and other moving parts. Desensitising the second stage by closing venturi assists or increasing the valve spring pressure often stops this problem. Juddering may also be caused by excessive but irregular friction of valve moving parts. ;Physical damage to the housing or components: Damage such as cracked housings, torn or dislodged mouthpieces, damaged exhaust fairings, can cause gas flow problems or leaks, or can make the regulator uncomfortable to use or difficult to breathe from.Accessories and special features
Anti-freezing modification
Pressure relief valve
A downstream demand valve serves as a fail safe for over-pressurization: if a first stage with a demand valve malfunctions and jams in the open position, the demand valve will be over-pressurized and will "free flow". Although it presents the diver with an imminent "out of air" crisis, this failure mode lets gas escape directly into the water without inflating buoyancy devices. The effect of unintentional inflation might be to carry the diver quickly to the surface causing the various Diving hazards and precautions#On ascent, injuries that can result from an over-fast ascent. There are circumstances where regulators are connected to inflatable equipment such as a rebreather's breathing bag, a Buoyancy compensator (diving), buoyancy compensator, or a drysuit, but without the need for demand valves. Examples of this are argon suit inflation sets and "off board" or secondary diluent cylinders for closed-circuit rebreathers. When no demand valve is connected to a regulator, it should be equipped with a pressure relief valve, unless it has a built in over pressure valve, so that over-pressurization does not inflate any buoyancy devices connected to the regulator or burst the low-pressure hose.Pressure monitoring
Standard submersible pressure gauge
The standard arrangement has a high pressure hose leading to a submersible pressure gauge (SPG) (also called a contents gauge). This is an analog (signal), analog mechanical gauge, usually with a Bourdon tube mechanism. It displays with a pointer moving over a dial, usually about diameter. Sometimes they are mounted in a console, which is a plastic or rubber case that holds the breathing gas pressure gauge and other instruments such as a depth gauge, dive computer and/or compass. The high pressure port usually has 7/16"-20 tpi UNF internal thread with an O-ring seal. This makes it impossible to connect a low pressure hose to the high pressure port. Early regulators occasionally used other thread sizes, including 3/8" UNF and 1/8" BSP (Poseidon Cyklon 200), and some of these allowed connection of low-pressure hose to high pressure port, which is dangerous with an upstream valve second stage or a BC or dry suit inflation hose, as the hose could burst under pressure.High pressure hose
The high pressure hose is a small bore flexible hose with permanently swaged end fittings that connects the submersible pressure gauge to the HP port of the regulator first stage. The HP hose end that fits the HP port usually has a very small bore orifice to restrict flow. This both reduces shock loads on the pressure gauge when the cylinder valve is opened, and reduces the loss of gas through the hose if it bursts or leaks for any reason. This tiny hole is vulnerable to blocking by corrosion products if the regulator is flooded, or by dust particles or corrosion products from a contaminated cylinder. At the other end of the hose the fitting to connect to the SPG usually has a swivel, allowing the gauge to be rotated on the hose under pressure. The seal between hose and gauge uses a small component generally referred to as a spool, which seals with an O-ring at each end that fits into the hose end and gauge with a barrel seal. This swivel can leak if the O-rings deteriorate, which is quite common, particularly with oxygen-rich breathing gas. The failure is seldom catastrophic, but the leak will get worse over time. High pressure hose lengths vary from about for sling and side-mount cylinders to about for back mounted scuba. Other lengths may be available off the shelf or made to order for special applications such as rebreathers or back mount with valve down.Button gauges
Air integrated computers
Secondary demand valve (Octopus)
Mouthpiece
The mouthpiece is a part that the user grips in the mouth to make a watertight seal. It is a short flattened-oval tube that goes in between the lips, with a curved flange that fits between the lips and the teeth and gingiva, gums, and seals against the inner surface of the lips. On the inner ends of the flange there are two tabs with enlarged ends, which are gripped between the teeth. These tabs also keep the teeth apart sufficiently to allow comfortable breathing through the gap. Most recreational diving regulators are fitted with a mouthpiece. In twin-hose regulators and rebreathers, "mouthpiece" may refer to the whole assembly between the two flexible tubes. A mouthpiece prevents clear speech, so a full-face mask is preferred where voice communication is needed. In a few models of scuba regulator the mouthpiece also has an outer rubber flange that fits outside the lips and extends into two straps that fasten together behind the neck. This helps to keep the mouthpiece in place if the user's jaws go slack through unconsciousness or distraction. The mouthpiece safety flange may also be a separate component. The attached neck strap also allows the diver to keep the regulator hanging under the chin where it is protected and ready for use. Recent mouthpieces do not usually include an external flange, but the practice of using a neck strap has been revived by technical divers who use a bungee or surgical rubber "necklace" which can come off the mouthpiece without damage if pulled firmly. The original mouthpieces were usually made from natural rubber and could cause an allergic reaction in some divers. This has been overcome by the use of hypo-allergenic synthetic elastomers such as silicone rubbers.Swivel hose adaptors
Full-face mask or helmet
This is stretching the concept of accessory a bit, as it would be equally valid to call the regulator an accessory of the full face mask or helmet, but the two items are closely connected and generally found in use together. Most full face masks and probably most diving helmets currently in use are open circuit demand systems, using a demand valve (in some cases more than one) and supplied from a scuba regulator or a surface supply umbilical from a surface supply panel using a surface supply regulator to control the pressure of primary and reserve air or other breathing gas. Lightweight demand diving helmets are almost always surface supplied, but full face masks are used equally appropriately with scuba open circuit, scuba closed circuit (rebreathers), and surface supplied open circuit. The demand valve is usually firmly attached to the helmet or mask, but there are a few models of full face mask that have removable demand valves with quick connections allowing them to be exchanged under water. These include the Dräger Panorama and Kirby-Morgan 48 Supermask.Buoyancy compensator and dry suit inflation hoses
Instrument consoles
Automatic closure device
The auto-closure device (ACD) is a mechanism for closing off the inlet opening of a regulator first stage when it is disconnected from a cylinder. A spring-loaded plunger in the inlet is mechanically depressed by contact with the cylinder valve when the regulator is fitted to the cylinder, which opens the port through which air flows into the regulator. In the normally closed condition when not mounted, this valve prevents ingress of water and other contaminants to the first stage interior which could be caused by negligent handling of the equipment or by accident. This is claimed by the manufacturer to extend the service life of the regulator and reduce risk of failure due to internal contamination. However, it is possible for an incorrectly installed ACD to shut off gas supply from a cylinder still containing gas during a dive.Gas compatibility
Recreational scuba nitrox service
Standard air regulators are considered to be suitable for nitrox mixtures containing 40% or less oxygen by volume, both by NOAA, which conducted extensive testing to verify this, and by most recreational diving agencies.Surface supplied nitrox service
When surface supplied equipment is used the diver does not have the option of simply taking out the DV and switching to an independent system, and gas switching may be done during a dive, including use of pure oxygen for accelerated decompression. To reduce the risk of confusion or getting the system contaminated, surface supplied systems may be required to be oxygen clean for all services except straight air diving.Oxygen service
Regulators to be used with pure oxygen and nitrox mixtures containing more than 40% oxygen by volume should use oxygen compatible components and lubricants, and be cleaned for oxygen service.Helium service
Helium is an exceptionally nonreactive gas and breathing gases containing helium do not require any special cleaning or lubricants. However, as helium is generally used for deep dives, it will normally be used with high performance regulators, with low work of breathing at high ambient pressures.Manufacturers and their brands
* Air Liquide: La Spirotechnique, Apeks and Aqua Lung * American Underwater Products (ROMI Enterprises, of San Leandro, Calif.): Aeris, Hollis Gear and Oceanic Worldwide, Oceanic * Atomic Aquatics * Beuchat * Cressi-Sub * Dive Rite * Dräger (company), Dräger * Halcyon Diving System * HTM Sports: Dacor (scuba diving), Dacor and Mares (scuba gear company), Mares * Poseidon Diving Systems AB * ScubaPro * Seac Sub * Tabata USA, Tusa * Tecline * ZeagleSee also
* * * * * *References
External links