HOME

TheInfoList



OR:

Direct-methanol fuel cells or DMFCs are a subcategory of proton-exchange fuel cells in which methanol is used as the fuel. Their main advantage is the ease of transport of methanol, an energy-dense yet reasonably stable liquid at all environmental conditions. Whilst the thermodynamic theoretical energy conversion efficiency of a DMFC is 97%; the currently achievable energy conversion efficiency for operational cells attains 30% – 40%. There is intensive research on promising approaches to increase the operational efficiency. A more efficient version of a direct fuel cell would play a key role in the theoretical use of methanol as a general energy transport medium, in the hypothesized
methanol economy The methanol economy is a suggested future economy in which methanol and dimethyl ether replace fossil fuels as a means of energy storage, ground transportation fuel, and raw material for synthetic hydrocarbons and their products. It offers an alter ...
.


The cell

In contrast to indirect methanol fuel cells, where methanol is reacted to
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
by steam reforming, DMFCs use a methanol solution (usually around 1 M, i.e. about 3% in mass) to carry the reactant into the cell; common operating temperatures are in the range , where high temperatures are usually pressurized. DMFCs themselves are more efficient at high temperatures and pressures, but these conditions end up causing so many losses in the complete system that the advantage is lost; therefore, atmospheric-pressure configurations are currently preferred. Because of the methanol cross-over, a phenomenon by which methanol diffuses through the membrane without reacting, methanol is fed as a weak solution: this decreases efficiency significantly, since crossed-over methanol, after reaching the air side (the cathode), immediately reacts with air; though the exact kinetics are debated, the result is a reduction of the cell voltage. Cross-over remains a major factor in inefficiencies, and often half of the methanol is lost to cross-over. Methanol cross-over and/or its effects can be alleviated by (a) developing alternative membranes (e.g.), (b) improving the electro-oxidation process in the catalyst layer and improving the structure of the catalyst and gas diffusion layers (e.g. ), and (c) optimizing the design of the flow field and the membrane electrode assembly (MEA) which can be achieved by studying the current density distributions (e.g. ). Other issues include the management of
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
created at the
anode An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic ...
, the sluggish dynamic behavior, and the ability to maintain the solution water. The only waste products with these types of fuel cells are
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
and water.


Application

Current DMFCs are limited in the power they can produce, but can still store a high energy content in a small space. This means they can produce a small amount of power over a long period of time. This makes them ill-suited for powering large vehicles (at least directly), but ideal for smaller vehicles such as forklifts and tuggers and consumer goods such as
mobile phone A mobile phone, cellular phone, cell phone, cellphone, handphone, hand phone or pocket phone, sometimes shortened to simply mobile, cell, or just phone, is a portable telephone that can make and receive calls over a radio frequency link whi ...
s,
digital camera A digital camera is a camera that captures photographs in digital memory. Most cameras produced today are digital, largely replacing those that capture images on photographic film. Digital cameras are now widely incorporated into mobile devices ...
s or laptops. Military applications of DMFCs are an emerging application since they have low noise and thermal signatures and no toxic effluent. These applications include power for man-portable tactical equipment, battery chargers, and autonomous power for test and training instrumentation. Units are available with power outputs between 25 watts and 5 kilowatts with durations up to 100 hours between refuelings. Especially for power output up to 0.3 kW the DMFC is suitable. For a power output of more than 0.3 kW the indirect methanol fuel cell presents a higher efficiency and is more cost-efficient. Freezing of the liquid methanol-water mixture in the stack at low ambient temperature can be problematic for the membrane of DMFC (in contrast to indirect methanol fuel cell).


Methanol

Methanol is a liquid from at atmospheric pressure. The volumetric energy density of methanol is an order of magnitude greater than even highly
compressed hydrogen Compressed hydrogen (CH2, CGH2 or CGH2) is the gaseous state of the element hydrogen kept under pressure. Compressed hydrogen in hydrogen tanks at 350 bar (5,000 psi) and 700 bar (10,000 psi) is used for mobile hydrogen storage in hydrogen vehic ...
, about two times greater than liquid hydrogen and 2.6 times higher than lithium-ion batteries. The energy density per mass is a tenth of than that of hydrogen, but 10 times higher than that of Lithium-ion batteries. Methanol is slightly
toxic Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subs ...
and highly flammable. However, the International Civil Aviation Organization's (ICAO) Dangerous Goods Panel (DGP) voted in November 2005 to allow passengers to carry and use micro fuel cells and methanol fuel cartridges when aboard airplanes to power
laptop computer A laptop, laptop computer, or notebook computer is a small, portable personal computer (PC) with a screen and alphanumeric keyboard. Laptops typically have a clam shell form factor with the screen mounted on the inside of the upper li ...
s and other consumer electronic devices. On September 24, 2007, the
US Department of Transportation The United States Department of Transportation (USDOT or DOT) is one of the executive departments of the U.S. federal government. It is headed by the secretary of transportation, who reports directly to the President of the United States a ...
issued a proposal to allow airline passengers to carry fuel cell cartridges on board. The Department of Transportation issued a final ruling on April 30, 2008, permitting passengers and crew to carry an approved fuel cell with an installed methanol cartridge and up to two additional spare cartridges. It is worth noting that 200 ml maximum methanol cartridge volume allowed in the final ruling is double the 100 ml limit on liquids allowed by the Transportation Security Administration in carry-on bags.


Reaction

The DMFC relies upon the
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
of methanol on a
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
layer to form
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
. Water is consumed at the
anode An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic ...
and produced at the
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in wh ...
. Protons (H+) are transported across the proton exchange membrane - often made from
Nafion Nafion is a brand name for a sulfonated tetrafluoroethylene based fluoropolymer-copolymer discovered in the late 1960s by Dr. Walther Grot of DuPont. Nafion is a brand of the Chemours company. It is the first of a class of synthetic polymers with ...
- to the cathode where they react with
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
to produce water.
Electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s are transported through an external circuit from anode to cathode, providing power to connected devices. The
half-reaction A half reaction (or half-cell reaction) is either the oxidation or reduction reaction component of a redox reaction. A half reaction is obtained by considering the change in oxidation states of individual substances involved in the redox reaction. ...
s are: Methanol and water are adsorbed on a catalyst usually made of
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
and
ruthenium Ruthenium is a chemical element with the symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is inert to most other chemical ...
particles, and lose protons until carbon dioxide is formed. As water is consumed at the
anode An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic ...
in the reaction, pure methanol cannot be used without provision of water via either passive transport such as back
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemica ...
(
osmosis Osmosis (, ) is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential (region o ...
), or
active transport In cellular biology, ''active transport'' is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellul ...
such as pumping. The need for water limits the energy density of the fuel. Platinum is used as a catalyst for both half-reactions. This contributes to the loss of cell voltage potential, as any methanol that is present in the cathode chamber will oxidize. If another catalyst could be found for the reduction of oxygen, the problem of methanol crossover would likely be significantly lessened. Furthermore, platinum is very expensive and contributes to the high cost per kilowatt of these cells. During the methanol oxidation reaction
carbon monoxide Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simple ...
(CO) is formed, which strongly adsorbs onto the platinum catalyst, reducing the number of available reaction sites and thus the performance of the cell. The addition of other metals, such as
ruthenium Ruthenium is a chemical element with the symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is inert to most other chemical ...
or
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile me ...
, to the platinum catalyst tends to ameliorate this problem. In the case of platinum-ruthenium catalysts, the oxophilic nature of ruthenium is believed to promote the formation of hydroxyl radicals on its surface, which can then react with carbon monoxide adsorbed on the platinum atoms. The water in the fuel cell is oxidized to a hydroxy radical via the following reaction: H2O → OH• + H+ + e. The hydroxy radical then oxidizes
carbon monoxide Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simple ...
to produce
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
, which is released from the surface as a gas: CO + OH• → CO2 + H+ + e. Using these OH groups in the half reactions, they are also expressed as:


Cross-over current

Methanol on the anodic side is usually in a weak solution (from 1M to 3M), because methanol in high concentrations has the tendency to diffuse through the membrane to the cathode, where its concentration is about zero because it is rapidly consumed by oxygen. Low concentrations help in reducing the cross-over, but also limit the maximum attainable current. The practical realization is usually that a solution loop enters the anode, exits, is refilled with methanol, and returns to the anode again. Alternatively, fuel cells with optimized structures can be directly fed with high concentration methanol solutions or even pure methanol.


Water drag

The water in the anodic loop is lost because of the anodic reaction, but mostly because of the associated water drag: every proton formed at the anode drags a number of water molecules to the cathode. Depending on temperature and membrane type, this number can be between 2 and 6.


Ancillary units

A direct methanol fuel cell is usually part of a larger system including all the ancillary units that permit its operation. Compared to most other types of fuel cells, the ancillary system of DMFCs is relatively complex. The main reasons for its complexity are: * providing water along with methanol would make the fuel supply more cumbersome, so water has to be recycled in a loop; * CO2 has to be removed from the solution flow exiting the fuel cell; * water in the anodic loop is slowly consumed by reaction and drag; it is necessary to recover water from the cathodic side to maintain steady operation.


See also


References


Further reading

*Merhoff, Henry and Helbig, Peter. Development and Fielding of a Direct Methanol Fuel Cell; ''ITEA Journal'', March 2010


External links


Fuel Cell Today. An internet portal of news and articles of fuel cell developments12th Small Fuel Cells. Annual conference on portable fuel cell technology developments
{{Fuel cells Fuel cells Methanol