HOME

TheInfoList



OR:

Countercurrent exchange is a mechanism occurring in nature and mimicked in industry and engineering, in which there is a crossover of some property, usually heat or some chemical, between two flowing bodies flowing in opposite directions to each other. The flowing bodies can be liquids, gases, or even solid powders, or any combination of those. For example, in a distillation column, the vapors bubble up through the downward flowing liquid while exchanging both heat and mass. The maximum amount of heat or mass transfer that can be obtained is higher with countercurrent than co-current (parallel) exchange because countercurrent maintains a slowly declining difference or
gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
(usually temperature or concentration difference). In cocurrent exchange the initial gradient is higher but falls off quickly, leading to wasted potential. For example, in the adjacent diagram, the fluid being heated (exiting top) has a higher exiting temperature than the cooled fluid (exiting bottom) that was used for heating. With cocurrent or parallel exchange the heated and cooled fluids can only approach one another. The result is that countercurrent exchange can achieve a greater amount of heat or mass transfer than parallel under otherwise similar conditions. See: flow arrangement. Countercurrent exchange when set up in a circuit or loop can be used for building up concentrations, heat, or other properties of flowing liquids. Specifically when set up in a loop with a buffering liquid between the incoming and outgoing fluid running in a circuit, and with
active transport In cellular biology, ''active transport'' is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellul ...
pumps on the outgoing fluid's tubes, the system is called a countercurrent multiplier, enabling a multiplied effect of many small pumps to gradually build up a large concentration in the buffer liquid. Other countercurrent exchange circuits where the incoming and outgoing fluids touch each other are used for retaining a high concentration of a dissolved substance or for retaining heat, or for allowing the external buildup of the heat or concentration at one point in the system. Countercurrent exchange circuits or loops are found extensively in
nature Nature, in the broadest sense, is the physical world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. Although humans are ...
, specifically in biologic systems. In vertebrates, they are called a rete mirabile, originally the name of an organ in fish
gills A gill () is a respiratory organ that many aquatic organisms use to extract dissolved oxygen from water and to excrete carbon dioxide. The gills of some species, such as hermit crabs, have adapted to allow respiration on land provided they are ...
for absorbing oxygen from the water. It is mimicked in industrial systems. Countercurrent exchange is a key concept in
chemical engineering Chemical engineering is an engineering field which deals with the study of operation and design of chemical plants as well as methods of improving production. Chemical engineers develop economical commercial processes to convert raw materials int ...
thermodynamics and manufacturing processes, for example in extracting sucrose from sugar beet roots. Countercurrent multiplication is a similar but different concept where liquid moves in a loop followed by a long length of movement in opposite directions with an intermediate zone. The tube leading to the loop passively building up a gradient of heat (or cooling) or solvent concentration while the returning tube has a constant small pumping action all along it, so that a gradual intensification of the heat or concentration is created towards the loop. Countercurrent multiplication has been found in the kidneys as well as in many other biological organs.


Three current exchange systems

Countercurrent exchange and cocurrent exchange are two mechanisms used to transfer some property of a fluid from one flowing current of fluid to another across a barrier allowing one way flow of the property between them. The property transferred could be
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
, concentration of a
chemical substance A chemical substance is a form of matter having constant chemical composition and characteristic properties. Some references add that chemical substance cannot be separated into its constituent elements by physical separation methods, i.e., w ...
, or other properties of the flow. When heat is transferred, a thermally-conductive membrane is used between the two tubes, and when the concentration of a chemical substance is transferred a semipermeable membrane is used.


Cocurrent flow—half transfer

In the cocurrent flow exchange mechanism, the two fluids flow in the same direction. As the cocurrent and countercurrent exchange mechanisms diagram showed, a cocurrent exchange system has a variable gradient over the length of the exchanger. With equal flows in the two tubes, this method of exchange is only capable of moving half of the property from one flow to the other, no matter how long the exchanger is. If each stream changes its property to be 50% closer to that of the opposite stream's inlet condition, exchange will stop when the point of equilibrium is reached, and the gradient has declined to zero. In the case of unequal flows, the equilibrium condition will occur somewhat closer to the conditions of the stream with the higher flow.


Cocurrent flow examples

A cocurrent heat exchanger is an example of a cocurrent flow exchange mechanism.
Two tubes have a liquid flowing in the same direction. One starts off hot at 60 °C, the second cold at 20 °C. A thermoconductive membrane or an open section allows heat transfer between the two flows. The hot fluid heats the cold one, and the cold fluid cools down the warm one. The result is thermal equilibrium: Both fluids end up at around the same temperature: 40 °C, almost exactly between the two original temperatures (20 and 60 °C). At the input end, there is a large temperature difference of 40 °C and much heat transfer; at the output end, there is a very small temperature difference (both are at the same temperature of 40 °C or close to it), and very little heat transfer if any at all. If the equilibrium—where both tubes are at the same temperature—is reached before the exit of the liquid from the tubes, no further heat transfer will be achieved along the remaining length of the tubes. A similar example is the cocurrent concentration exchange. The system consists of two tubes, one with brine (concentrated saltwater), the other with freshwater (which has a low concentration of salt in it), and a
semi permeable membrane Semipermeable membrane is a type of biological or synthetic, polymeric membrane that will allow certain molecules or ions to pass through it by osmosis. The rate of passage depends on the pressure, concentration, and temperature of the molecule ...
which allows only water to pass between the two, in an osmotic process. Many of the water molecules pass from the freshwater flow in order to dilute the brine, while the concentration of salt in the freshwater constantly grows (since the salt is not leaving this flow, while water is). This will continue, until both flows reach a similar dilution, with a concentration somewhere close to midway between the two original dilutions. Once that happens, there will be no more flow between the two tubes, since both are at a similar dilution and there is no more osmotic pressure.


Countercurrent flow—almost full transfer

In countercurrent flow, the two flows move in opposite directions. Two tubes have a liquid flowing in opposite directions, transferring a property from one tube to the other. For example, this could be transferring heat from a hot flow of liquid to a cold one, or transferring the concentration of a dissolved solute from a high concentration flow of liquid to a low concentration flow. The counter-current exchange system can maintain a nearly constant
gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
between the two flows over their entire length of contact. With a sufficiently long length and a sufficiently low flow rate this can result in almost all of the property transferred. So, for example, in the case of heat exchange, the exiting liquid will be almost as hot as the original incoming liquid's heat.


Countercurrent flow examples

In a countercurrent heat exchanger, the hot fluid becomes cold, and the cold fluid becomes hot. In this example, hot water at 60 °C enters the top pipe. It warms water in the bottom pipe which has been warmed up along the way, to almost 60 °C. A minute but existing heat difference still exists, and a small amount of heat is transferred, so that the water leaving the bottom pipe is at close to 60 °C. Because the hot input is at its maximum temperature of 60 °C, and the exiting water at the bottom pipe is nearly at that temperature but not quite, the water in the top pipe can warm the one in the bottom pipe to nearly its own temperature. At the cold end—the water exit from the top pipe, because the cold water entering the bottom pipe is still cold at 20 °C, it can extract the last of the heat from the now-cooled hot water in the top pipe, bringing its temperature down nearly to the level of the cold input fluid (21 °C). The result is that the top pipe which received hot water, now has cold water leaving it at 20 °C, while the bottom pipe which received cold water, is now emitting hot water at close to 60 °C. In effect, most of the heat was transferred.


Conditions for higher transfer results

Nearly complete transfer in systems implementing countercurrent exchange, is only possible if the two flows are, in some sense, "equal". For a maximum transfer of substance concentration, an equal flowrate of
solvent A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for ...
s and solutions is required. For maximum heat transfer, the average specific heat capacity and the mass flow rate must be the same for each stream. If the two flows are not equal, for example if heat is being transferred from water to air or vice versa, then, similar to cocurrent exchange systems, a variation in the gradient is expected because of a buildup of the property not being transferred properly.


Countercurrent exchange in biological systems

Countercurrent exchange in biological systems occurred following the discovery of countercurrent multiplication systems by Werner Kuhn. Countercurrent exchange is used extensively in biological systems for a wide variety of purposes. For example,
fish Fish are aquatic, craniate, gill-bearing animals that lack limbs with digits. Included in this definition are the living hagfish, lampreys, and cartilaginous and bony fish as well as various extinct related groups. Approximately 95% of ...
use it in their gills to transfer oxygen from the surrounding water into their blood, and
bird Birds are a group of warm-blooded vertebrates constituting the class Aves (), characterised by feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweig ...
s use a countercurrent
heat exchanger A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct conta ...
between blood vessels in their legs to keep heat concentrated within their bodies. In vertebrates, this type of organ is referred to as a rete mirabile (originally the name of the organ in the fish gills). Mammalian
kidney The kidneys are two reddish-brown bean-shaped organs found in vertebrates. They are located on the left and right in the retroperitoneal space, and in adult humans are about in length. They receive blood from the paired renal arteries; blo ...
s use countercurrent exchange to remove water from urine so the body can retain water used to move the nitrogenous waste products (see countercurrent multiplier).


Countercurrent multiplication loop

A countercurrent multiplication loop is a system where fluid flows in a loop so that the entrance and exit are at similar low concentration of a dissolved substance but at the far end of the loop there is a high concentration of that substance. A buffer liquid between the incoming and outgoing tubes receives the concentrated substance. The incoming and outgoing tubes do not touch each other. The system allows the buildup of a high concentration gradually, by allowing a natural buildup of concentration towards the tip inside the in-going tube, (for example using osmosis of water out of the input pipe and into the buffer fluid), and the use of many
active transport In cellular biology, ''active transport'' is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellul ...
pumps each pumping only against a very small gradient, during the exit from the loop, returning the concentration inside the output pipe to its original concentration. The incoming flow starting at a low concentration has a semipermeable membrane with water passing to the buffer liquid via
osmosis Osmosis (, ) is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential (region o ...
at a small gradient. There is a gradual buildup of concentration inside the loop until the loop tip where it reaches its maximum. Theoretically a similar system could exist or be constructed for heat exchange. In the example shown in the image, water enters at 299 mg/L (NaCl / H2O). Water passes because of a small osmotic pressure to the buffer liquid in this example at 300 mg/L (NaCl / H2O). Further up the loop there is a continued flow of water out of the tube and into the buffer, gradually raising the concentration of NaCl in the tube until it reaches 1199 mg/L at the tip. The buffer liquid between the two tubes is at a gradually rising concentration, always a bit over the incoming fluid, in this example reaching 1200 mg/L. This is regulated by the pumping action on the returning tube as will be explained immediately. The tip of the loop has the highest concentration of salt (NaCl) in the incoming tube—in the example 1199 mg/L, and in the buffer 1200 mg/L. The returning tube has active transport pumps, pumping salt out to the buffer liquid at a low difference of concentrations of up to 200 mg/L more than in the tube. Thus when opposite the 1000 mg/L in the buffer liquid, the concentration in the tube is 800 and only 200 mg/L are needed to be pumped out. But the same is true anywhere along the line, so that at exit of the loop also only 200 mg/L need to be pumped. In effect, this can be seen as a gradually multiplying effect—hence the name of the phenomena: a 'countercurrent multiplier' or the mechanism: Countercurrent multiplication, but in current engineering terms, countercurrent multiplication is any process where only slight pumping is needed, due to the constant small difference of concentration or heat along the process, gradually raising to its maximum. There is no need for a buffer liquid, if the desired effect is receiving a high concentration at the output pipe.


In the kidney

A circuit of fluid in the
Loop of Henle In the kidney, the loop of Henle () (or Henle's loop, Henle loop, nephron loop or its Latin counterpart ''ansa nephroni'') is the portion of a nephron that leads from the proximal convoluted tubule to the distal convoluted tubule. Named after its ...
—an important part of the kidneys allows for gradual buildup of the concentration of urine in the kidneys, by using
active transport In cellular biology, ''active transport'' is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellul ...
on the exiting
nephron The nephron is the minute or microscopic structural and functional unit of the kidney. It is composed of a renal corpuscle and a renal tubule. The renal corpuscle consists of a tuft of capillaries called a glomerulus and a cup-shaped structure ...
s (tubules carrying liquid in the process of gradually concentrating the urea). The active transport pumps need only to overcome a constant and low gradient of concentration, because of the countercurrent multiplier mechanism Various substances are passed from the liquid entering the nephrons until exiting the loop (See the nephron flow diagram). The sequence of flow is as follows: *
Renal corpuscle A renal corpuscle (also called malpighian body) is the blood-filtering component of the nephron of the kidney. It consists of a glomerulus - a tuft of capillaries composed of endothelial cells, and a glomerular capsule known as Bowman's capsul ...
: Liquid enters the nephron system at the Bowman's capsule. *
Proximal convoluted tubule The proximal tubule is the segment of the nephron in kidneys which begins from the renal pole of the Bowman's capsule to the beginning of loop of Henle. It can be further classified into the proximal convoluted tubule (PCT) and the proximal straig ...
: It then may reabsorb urea in the thick descending limb. Water is removed from the nephrons by
osmosis Osmosis (, ) is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential (region o ...
(and glucose and other ions are pumped out with
active transport In cellular biology, ''active transport'' is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellul ...
), gradually raising the concentration in the nephrons. * Loop of Henle Descending: The liquid passes from the thin descending limb to the thick ascending limb. Water is constantly released via osmosis. Gradually there is a buildup of osmotic concentration, until 1200 mOsm is reached at the loop tip, but the difference across the membrane is kept small and constant. :For example, the liquid at one section inside the thin descending limb is at 400 mOsm while outside it is 401. Further down the descending limb, the inside concentration is 500 while outside it is 501, so a constant difference of 1 mOsm is kept all across the membrane, although the concentration inside and outside are gradually increasing. * Loop of Henle Ascending: after the tip (or 'bend') of the loop, the liquid flows in the ''thin'' ascending limb. Salt–
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
Na+ and
chloride The chloride ion is the anion (negatively charged ion) Cl−. It is formed when the element chlorine (a halogen) gains an electron or when a compound such as hydrogen chloride is dissolved in water or other polar solvents. Chloride sa ...
Cl ions are pumped out of the liquid gradually lowering the concentration in the exiting liquid, but, using the countercurrent multiplier mechanism, always pumping against a constant and small osmotic difference. :For example, the pumps at a section close to the bend, pump out from 1000 mOsm inside the ascending limb to 1200 mOsm outside it, with a 200 mOsm across. Pumps further up the thin ascending limb, pump out from 400 mOsm into liquid at 600 mOsm, so again the difference is retained at 200 mOsm from the inside to the outside, while the concentration both inside and outside are gradually decreasing as the liquid flow advances. :The liquid finally reaches a low concentration of 100 mOsm when leaving the ''thin'' ascending limb and passing through the ''thick'' one *
Distal convoluted tubule The distal convoluted tubule (DCT) is a portion of kidney nephron between the loop of Henle and the collecting tubule. Physiology It is partly responsible for the regulation of potassium, sodium, calcium, and pH. On its apical surface (lumen ...
: Once leaving the loop of Henle the thick ascending limb can optionally reabsorb and re increase the concentration in the nephrons. *
Collecting duct The collecting duct system of the kidney consists of a series of tubules and ducts that physically connect nephrons to a minor calyx or directly to the renal pelvis. The collecting duct system is the last part of nephron and participates in elect ...
: The collecting duct receives liquid between 100 mOsm if no re-absorption is done, to 300 or above if re-absorption was used. The collecting duct may continue raising the concentration if required, by gradually pumping out the same ions as the Distal convoluted tubule, using the same gradient as the ascending limbs in the loop of Henle, and reaching the same concentration. * Ureter: The liquid urine leaves to the
Ureter The ureters are tubes made of smooth muscle that propel urine from the kidneys to the urinary bladder. In a human adult, the ureters are usually long and around in diameter. The ureter is lined by urothelial cells, a type of transitional epit ...
. * Same principle is used in hemodialysis within artificial kidney machines.


History

Initially the countercurrent exchange mechanism and its properties were proposed in 1951 by professor Werner Kuhn and two of his former students who called the mechanism found in the
Loop of Henle In the kidney, the loop of Henle () (or Henle's loop, Henle loop, nephron loop or its Latin counterpart ''ansa nephroni'') is the portion of a nephron that leads from the proximal convoluted tubule to the distal convoluted tubule. Named after its ...
in mammalian
kidneys The kidneys are two reddish-brown bean-shaped organs found in vertebrates. They are located on the left and right in the retroperitoneal space, and in adult humans are about in length. They receive blood from the paired renal arteries; bloo ...
a Countercurrent multiplier and confirmed by laboratory findings in 1958 by Professor
Carl W. Gottschalk Carl William Gottschalk (April 28, 1922 – October 15, 1997) was the Kenan Professor and Distinguished Research Professor of Medicine at the University of North Carolina at Chapel Hill. Gottschalk made important discoveries about the function o ...
. The theory was acknowledged a year later after a meticulous study showed that there is almost no osmotic difference between liquids on both sides of nephrons. Homer Smith, a considerable contemporary authority on renal physiology, opposed the model countercurrent concentration for 8 years, until conceding ground in 1959.Smith, Homer W., The fate of sodium and water in the renal tubules, Bull. New York Academy of Medicine 35:293–316, 1959. Ever since, many similar mechanisms have been found in biologic systems, the most notable of these: the
Rete mirabile A rete mirabile (Latin for "wonderful net"; plural retia mirabilia) is a complex of arteries and veins lying very close to each other, found in some vertebrates, mainly warm-blooded ones. The rete mirabile utilizes countercurrent blood flow within ...
in fish.


Countercurrent exchange of heat in organisms

In cold weather the blood flow to the limbs of birds and mammals is reduced on exposure to cold environmental conditions, and returned to the trunk via the deep veins which lie alongside the arteries (forming
venae comitantes Vena comitans is Latin for accompanying vein. It refers to a vein that is usually paired, with both veins lying on the sides of an artery. They are found in close proximity to arteries so that the pulsations of the artery aid venous return. B ...
). This acts as a counter-current exchange system which short-circuits the warmth from the arterial blood directly into the venous blood returning into the trunk, causing minimal heat loss from the extremities in cold weather. The subcutaneous limb veins are tightly constricted, thereby reducing heat loss via this route, and forcing the blood returning from the extremities into the counter-current blood flow systems in the centers of the limbs. Birds and mammals that regularly immerse their limbs in cold or icy water have particularly well developed counter-current blood flow systems to their limbs, allowing prolonged exposure of the extremities to the cold without significant loss of body heat, even when the limbs are as thin as the lower legs, or tarsi, of a bird, for instance. When animals like the leatherback turtle and
dolphins A dolphin is an aquatic mammal within the infraorder Cetacea. Dolphin species belong to the families Delphinidae (the oceanic dolphins), Platanistidae (the Indian river dolphins), Iniidae (the New World river dolphins), Pontoporiidae (t ...
are in colder water to which they are not acclimatized, they use this CCHE mechanism to prevent heat loss from their flippers, tail flukes, and
dorsal fin A dorsal fin is a fin located on the back of most marine and freshwater vertebrates within various taxa of the animal kingdom. Many species of animals possessing dorsal fins are not particularly closely related to each other, though through c ...
s. Such CCHE systems are made up of a complex network of peri-arterial venous plexuses, or venae comitantes, that run through the blubber from their minimally insulated limbs and thin streamlined protuberances. Each plexus consists of a central artery containing warm blood from the heart surrounded by a bundle of veins containing cool blood from the body surface. As these fluids flow past each other, they create a heat gradient in which heat is transferred and retained inside the body. The warm arterial blood transfers most of its heat to the cool venous blood now coming in from the outside. This conserves heat by recirculating it back to the body core. Since the arteries give up a good deal of their heat in this exchange, there is less heat lost through
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the conve ...
at the periphery surface. Another example is found in the legs of an
Arctic fox The Arctic fox (''Vulpes lagopus''), also known as the white fox, polar fox, or snow fox, is a small fox native to the Arctic regions of the Northern Hemisphere and common throughout the Arctic tundra biome. It is well adapted to living in ...
treading on snow. The paws are necessarily cold, but blood can circulate to bring nutrients to the paws without losing much heat from the body. Proximity of arteries and veins in the leg results in heat exchange, so that as the blood flows down it becomes cooler, and doesn't lose much heat to the snow. As the (cold) blood flows back up from the paws through the veins, it picks up heat from the blood flowing in the opposite direction, so that it returns to the torso in a warm state, allowing the fox to maintain a comfortable temperature, without losing it to the snow. This system is so efficient that the Arctic fox does not begin to shiver until the temperature drops to .


Countercurrent exchange in sea and desert birds to conserve water

Sea and desert birds have been found to have a
salt gland The salt gland is an organ for excreting excess salts. It is found in the cartilaginous fishes subclass elasmobranchii (sharks, rays, and skates), seabirds, and some reptiles. Salt glands can be found in the rectum of sharks. Birds and reptiles ...
near the nostrils which concentrates brine, later to be "sneezed" out to the sea, in effect allowing these birds to drink seawater without the need to find freshwater resources. It also enables the seabirds to remove the excess salt entering the body when eating, swimming or diving in the sea for food. The kidney cannot remove these quantities and concentrations of salt. The salt secreting gland has been found in seabirds like pelicans,
petrel Petrels are tube-nosed seabirds in the bird order Procellariiformes. Description The common name does not indicate relationship beyond that point, as "petrels" occur in three of the four families within that group (all except the albatross f ...
s, albatrosses,
gull Gulls, or colloquially seagulls, are seabirds of the family Laridae in the suborder Lari. They are most closely related to the terns and skimmers and only distantly related to auks, and even more distantly to waders. Until the 21st century ...
s, and
tern Terns are seabirds in the family Laridae that have a worldwide distribution and are normally found near the sea, rivers, or wetlands. Terns are treated as a subgroup of the family Laridae which includes gulls and skimmers and consists of e ...
s. It has also been found in Namibian ostriches and other desert birds, where a buildup of salt concentration is due to dehydration and scarcity of drinking water. In seabirds the salt gland is above the beak, leading to a main canal above the beak, and water is blown from two small nostrils on the beak, to empty it. The salt gland has two countercurrent mechanisms working in it: a. A salt extraction system with a countercurrent multiplication mechanism, where salt is actively pumped from the blood 'venules' (small veins) into the gland tubules. Although the fluid in the tubules is with a higher concentration of salt than the blood, the flow is arranged in a countercurrent exchange, so that the blood with a high concentration of salt enters the system close to where the gland tubules exit and connect to the main canal. Thus, all along the gland, there is only a small gradient to climb, in order to push the salt from the blood to the salty fluid with
active transport In cellular biology, ''active transport'' is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellul ...
powered by ATP. b. The blood supply system to the gland is set in countercurrent exchange loop mechanism for keeping the high concentration of salt in the gland's blood, so that it doesn't leave back to the blood system. The glands remove the salt efficiently and thus allow the birds to drink the salty water from their environment while they are hundreds of miles away from land.


Countercurrent exchange in industry and scientific research

Countercurrent Chromatography is a method of separation, that is based on the differential partitioning of analytes between two immiscible liquids using countercurrent or cocurrent flow. Evolving from Craig's Countercurrent Distribution (CCD), the most widely used term and abbreviation is CounterCurrent Chromatography or CCC, in particular when using hydrodynamic CCC instruments. The term partition chromatography is largely a synonymous and predominantly used for hydrostatic CCC instruments. *
Distillation Distillation, or classical distillation, is the process of separating the components or substances from a liquid mixture by using selective boiling and condensation, usually inside an apparatus known as a still. Dry distillation is the heat ...
of chemicals such as in petroleum refining is done in towers or columns with perforated trays. Vapor from the low boiling fractions bubbles upward through the holes in the trays in contact with the down flowing high boiling fractions. The concentration of low boiling fraction increases in each tray up the tower as it is "stripped". The low boiling fraction is drawn off the top of the tower and the high boiling fraction drawn from the bottom. The process in the trays is a combination of
heat transfer Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, ...
and
mass transfer Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration ...
. Heat is supplied at the bottom, known as a "reboiler" and cooling is done with a condenser at the top. * Liquid-liquid extraction (also called 'solvent extraction' or 'partitioning') is a common method for extracting a substance from one liquid into another liquid at a different 'phase' (such as "slurry"). This method, which implements a countercurrent mechanism, is used in nuclear reprocessing,
ore Ore is natural rock or sediment that contains one or more valuable minerals, typically containing metals, that can be mined, treated and sold at a profit.Encyclopædia Britannica. "Ore". Encyclopædia Britannica Online. Retrieved 7 Apr ...
processing, the production of fine organic compounds, the processing of
perfumes Perfume (, ; french: parfum) is a mixture of fragrant essential oils or aroma compounds (fragrances), fixatives and solvents, usually in liquid form, used to give the human body, animals, food, objects, and living-spaces an agreeable scent. T ...
, the production of
vegetable oil Vegetable oils, or vegetable fats, are oils extracted from seeds or from other parts of fruits. Like animal fats, vegetable fats are ''mixtures'' of triglycerides. Soybean oil, grape seed oil, and cocoa butter are examples of seed oils, or f ...
s and
biodiesel Biodiesel is a form of diesel fuel derived from plants or animals and consisting of long-chain fatty acid esters. It is typically made by chemically reacting lipids such as animal fat ( tallow), soybean oil, or some other vegetable oil ...
, and other industries. *
Gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile me ...
can be separated from a
cyanide Cyanide is a naturally occurring, rapidly acting, toxic chemical that can exist in many different forms. In chemistry, a cyanide () is a chemical compound that contains a functional group. This group, known as the cyano group, consists of ...
solution with the Merrill-Crowe process using Counter Current Decantation (CCD). In some mines,
Nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow ...
and
Cobalt Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, p ...
are treated with CCD, after the original ore was treated with concentrated Sulfuric acid and steam in
Titanium Titanium is a chemical element with the Symbol (chemistry), symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resista ...
covered
autoclave An autoclave is a machine used to carry out industrial and scientific processes requiring elevated temperature and pressure in relation to ambient pressure and/or temperature. Autoclaves are used before surgical procedures to perform sterilizati ...
s, producing nickel cobalt slurry. The nickel and cobalt in the slurry are removed from it almost completely using a CCD system exchanging the cobalt and nickel with flash steam heated water. *
Lime Lime commonly refers to: * Lime (fruit), a green citrus fruit * Lime (material), inorganic materials containing calcium, usually calcium oxide or calcium hydroxide * Lime (color), a color between yellow and green Lime may also refer to: Botany ...
can be manufactured in countercurrent furnaces allowing the heat to reach high temperatures using low cost, low temperature burning fuel. Historically this was developed by the Japanese in certain types of the
Anagama kiln The ''anagama'' kiln (Japanese Kanji: 穴窯/ Hiragana: あながま) is an ancient type of pottery kiln brought to Japan from China via Korea in the 5th century. It is a version of the climbing dragon kiln of south China, whose further dev ...
. The kiln is built in stages, where fresh air coming to the fuel is passed downwards while the smoke and heat is pushed up and out. The heat does not leave the kiln, but is transferred back to the incoming air, and thus slowly builds up to 3000 °C and more. *
Cement A cement is a binder, a chemical substance used for construction that sets, hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel ( aggregate) together. Cement mi ...
may be created using a countercurrent kiln where the heat is passed in the cement and the exhaust combined, while the incoming air draft is passed along the two, absorbing the heat and retaining it inside the furnace, finally reaching high temperatures. * Gasification: the process of creating
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Ea ...
and
carbon monoxide Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simple ...
from organic or fossil matter, can be done using a Counter-current fixed bed ("up draft") gasifier which is built in a similar way to the Anagama kiln, and must therefore withstand more harsh conditions, but reaches better efficiency. * In nuclear power plants, water leaving the plant must not contain even trace particles of Uranium. Counter Current Decantation (CCD) is used in some facilities to extract water, totally clear of Uranium. *
Zippe-type centrifuge The Zippe-type centrifuge is a gas centrifuge designed to enrich the rare fissile isotope uranium-235 (235U) from the mixture of isotopes found in naturally occurring uranium compounds. The isotopic separation is based on the slight difference in ...
s use countercurrent multiplication between rising and falling convection currents to reduce the number of stages needed in a cascade. * Some
Centrifugal extractor A centrifugal extractor—also known as a centrifugal contactor or annular centrifugal contactor—uses the rotation of the rotor inside a centrifuge to mix two immiscible liquids outside the rotor and to separate the liquids in the field of gra ...
s use counter current exchange mechanisms for extracting high rates of the desired material. * Some
protein skimmer A protein skimmer or foam fractionator is a device used to remove organic compounds such as food and waste particles from water. It is most commonly used in commercial applications like municipal water treatment facilities and public aquariums. Sm ...
s (devices used to clean saltwater pools and fish ponds of organic matter) use counter current technologies. * Countercurrent processes have also been used to study the behavior of small animals and isolate individuals with altered behaviors due to genetic mutations.


See also

*
Anagama kiln The ''anagama'' kiln (Japanese Kanji: 穴窯/ Hiragana: あながま) is an ancient type of pottery kiln brought to Japan from China via Korea in the 5th century. It is a version of the climbing dragon kiln of south China, whose further dev ...
*
Bidirectional traffic In transportation infrastructure, a bidirectional traffic system divides travellers into two streams of traffic that flow in opposite directions. In the design and construction of tunnels, bidirectional traffic can markedly affect ventilation con ...
*
Economizer Economizers (US and Oxford spelling), or economisers (UK), are mechanical devices intended to reduce energy consumption, or to perform useful function such as preheating a fluid. The term economizer is used for other purposes as well. Boiler, po ...
*
Regenerative heat exchanger A regenerative heat exchanger, or more commonly a regenerator, is a type of heat exchanger where heat from the hot fluid is intermittently stored in a thermal storage medium before it is transferred to the cold fluid. To accomplish this the hot fl ...
* Countercurrent multiplier


External links


Countercurrent multiplier animation
from Colorado University.
Research about elephant seals
using countercurrent heat exchange to keep heat from leaving their body while breathing out, during hibernation.
Patent for a snow mask with a removable countercurrent exchange module
which keeps the warmth from leaving the mask when breathing out.
An industrial system for aerating waste water
and sewage which works on the countercurrent exchange principle, without pipes. Air bubbles floating upwards meet water in a down current, causing more of the air to dissolve.According to the company, almost half of the electricity in the US is used to aerate sewage and wastewater. The countercurrent exchange method saves up to 50% of the electricity


References

{{reflist, 30em Chemical process engineering Industrial processes Animal anatomy Renal physiology Heat transfer