cosmic age problem
   HOME

TheInfoList



OR:

The cosmic age problem is a historical problem in astronomy concerning the
age of the universe In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, ...
. The problem was that at various times in the 20th century, some objects in the universe were estimated to be older than the time elapsed since the Big Bang,Evidence for the Big Bang
by Björn Feuerbacher and Ryan Scranton. January 25, 2006. Retrieved 16 April 2007.
as estimated from measurements of the expansion rate of the universe known as the
Hubble constant Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving ...
, denoted H0. (This is more correctly called the Hubble parameter, since it generally varies with time). If so, this would represent a contradiction, since objects such as galaxies, stars and planets could not have existed in the extreme temperatures and densities shortly after the Big Bang. Since around 1997–2003, the problem is believed to have been solved by most cosmologists: modern cosmological measurements lead to a precise estimate of the
age of the universe In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, ...
(i.e. time since the Big Bang) of 13.8 billion years, and recent age estimates for the oldest objects are either younger than this, or consistent allowing for measurement uncertainties.


Early years

Following theoretical developments of the
Friedmann equations The Friedmann equations are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann ...
by
Alexander Friedmann Alexander Alexandrovich Friedmann (also spelled Friedman or Fridman ; russian: Алекса́ндр Алекса́ндрович Фри́дман) (June 16 .S. 4 1888 – September 16, 1925) was a Russian and Soviet physicist and mathematician ...
and
Georges Lemaître Georges Henri Joseph Édouard Lemaître ( ; ; 17 July 1894 – 20 June 1966) was a Belgian Catholic priest, theoretical physicist, mathematician, astronomer, and professor of physics at the Catholic University of Louvain. He was the first to t ...
in the 1920s, and the discovery of the expanding universe by Edwin Hubble in 1929, it was immediately clear that tracing this expansion backwards in time predicts that the universe had almost zero size at a finite time in the past. This concept, initially known as the "Primeval Atom" by Lemaitre, was later elaborated into the modern Big Bang theory. If the universe had expanded at a constant rate in the past, the age of the universe now (i.e. the time since the Big Bang) is simply the inverse of the Hubble constant, often known as the ''Hubble time''. For Big Bang models with zero
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field eq ...
and positive matter density, the actual age must be somewhat younger than this Hubble time; typically the age would be between 66% and 90% of the Hubble time, depending on the density of matter. Hubble's early estimate of his constant was 550 (km/s)/Mpc, and the inverse of that is 1.8 billion years. It was believed by many geologists such as
Arthur Holmes Arthur Holmes (14 January 1890 – 20 September 1965) was an English geologist who made two major contributions to the understanding of geology. He pioneered the use of radiometric dating of minerals, and was the first earth scientist to grasp ...
in the 1920s that the Earth was probably over 2 billion years old, but with large uncertainty. The possible discrepancy between the ages of the Earth and the universe was probably one motivation for the development of the
Steady State theory In cosmology, the steady-state model, or steady state theory is an alternative to the Big Bang theory of evolution of the universe. In the steady-state model, the density of matter in the expanding universe remains unchanged due to a continuous ...
in 1948 as an alternative to the Big Bang; in the (now obsolete) steady state theory, the universe is infinitely old and on average unchanging with time. The steady state theory postulated spontaneous creation of matter to keep the average density constant as the universe expands, and therefore most galaxies still have an age less than 1/H0. However, if H0 had been 550 (km/s)/Mpc, our Milky Way galaxy would be exceptionally large compared to most other galaxies, so it could well be much older than an average galaxy, therefore eliminating the age problem.


1950–1970

In the 1950s, two substantial errors were discovered in Hubble's extragalactic distance scale: first in 1952,
Walter Baade Wilhelm Heinrich Walter Baade (March 24, 1893 – June 25, 1960) was a German astronomer who worked in the United States from 1931 to 1959. Biography The son of a teacher, Baade finished school in 1912. He then studied maths, physics and astr ...
discovered there were two classes of
Cepheid A Cepheid variable () is a type of star that pulsates radially, varying in both diameter and temperature and producing changes in brightness with a well-defined stable period and amplitude. A strong direct relationship between a Cepheid varia ...
variable star. Hubble's sample comprised different classes nearby and in other galaxies, and correcting this error made all other galaxies twice as distant as Hubble's values, thus doubling the Hubble time. A second error was discovered by
Allan Sandage Allan Rex Sandage (June 18, 1926 – November 13, 2010) was an American astronomer. He was Staff Member Emeritus with the Carnegie Observatories in Pasadena, California. He determined the first reasonably accurate values for the Hubble con ...
and coworkers: for galaxies beyond the
Local Group The Local Group is the galaxy group that includes the Milky Way. It has a total diameter of roughly , and a total mass of the order of . It consists of two collections of galaxies in a "dumbbell" shape: the Milky Way and its satellites form ...
, Cepheids were too faint to observe with Hubble's instruments, so Hubble used the brightest stars as distance indicators. Many of Hubble's "brightest stars" were actually HII regions or clusters containing many stars, which caused another underestimation of distances for these more distant galaxies. Thus, in 1958 Sandage published the first reasonably accurate measurement of the Hubble constant, at 75 (km/s)/Mpc, which is close to modern estimates of 68–74 (km/s)/Mpc. The age of the Earth (actually the Solar System) was first accurately measured around 1955 by
Clair Patterson Clair Cameron Patterson (June 2, 1922 – December 5, 1995) was an American geochemist. Born in Mitchellville, Iowa, Patterson graduated from Grinnell College. He later received his Ph.D. from the University of Chicago and spent his entire prof ...
at 4.55 billion years, essentially identical to the modern value. For H0 ~ 75 (km/s)/Mpc, the inverse of H0 is 13.0 billion years; so after 1958 the Big Bang model age was comfortably older than the Earth. However, in the 1960s and onwards, new developments in the theory of stellar evolution enabled age estimates for large star clusters called
globular clusters A globular cluster is a spheroidal conglomeration of stars. Globular clusters are bound together by gravity, with a higher concentration of stars towards their centers. They can contain anywhere from tens of thousands to many millions of membe ...
: these generally gave age estimates of around 15 billion years, with substantial scatter. Further revisions of the Hubble constant by Sandage and Gustav Tammann in the 1970s gave values around 50–60 (km/s)/Mpc, and an inverse of 16-20 billion years, consistent with globular cluster ages.


1975–1990

However, in the late 1970s to early 1990s, the age problem re-appeared: new estimates of the Hubble constant gave higher values, with
Gerard de Vaucouleurs Gerard is a masculine forename of Proto-Germanic origin, variations of which exist in many Germanic and Romance languages. Like many other early Germanic names, it is dithematic, consisting of two meaningful constituents put together. In this ca ...
estimating values 90–100 (km/s)/Mpc, while Marc Aaronson and co-workers gave values around 80-90  (km/s)/Mpc. Sandage and Tammann continued to argue for values 50–60, leading to a period of controversy sometimes called the "Hubble wars". The higher values for H0 appeared to predict a universe younger than the globular cluster ages, and gave rise to some speculations during the 1980s that the Big Bang model was seriously incorrect.


Late 1990s: probable solution

The age problem was eventually thought to be resolved by several developments between 1995 and 2003: firstly, a large program with the
Hubble Space Telescope The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most vers ...
measured the Hubble constant at 72 (km/s)/Mpc with 10 percent uncertainty. Secondly, measurements of parallax by the Hipparcos spacecraft in 1995 revised globular cluster distances upwards by 5-10 percent; this made their stars brighter than previously estimated and therefore younger, shifting their age estimates down to around 12-13 billion years. Finally, from 1998 to 2003 a number of new cosmological observations including supernovae,
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
observations and large galaxy
redshift survey In astronomy, a redshift survey is a survey of a section of the sky to measure the redshift of astronomical objects: usually galaxies, but sometimes other objects such as galaxy clusters or quasars. Using Hubble's law, the redshift can be use ...
s led to the acceptance of
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univ ...
and the establishment of the
Lambda-CDM The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda (Greek Λ) associated with ...
model as the standard model of cosmology. The presence of dark energy implies that the universe was expanding more slowly at around half its present age than today, which makes the universe older for a given value of the Hubble constant. The combination of the three results above essentially removed the discrepancy between estimated globular cluster ages and the age of the universe. More recent measurements from
WMAP The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe (MAP and Explorer 80), was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic mic ...
and the
Planck spacecraft ''Planck'' was a space observatory operated by the European Space Agency (ESA) from 2009 to 2013, which mapped the anisotropies of the cosmic microwave background (CMB) at microwave and infrared frequencies, with high sensitivity and small angu ...
lead to an estimate of the
age of the universe In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, ...
of 13.80 billion years with only 0.3 percent uncertainty (based on the standard
Lambda-CDM model The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda (Greek Λ) associated with ...
), and modern age measurements for globular clusters and other objects are currently smaller than this value (within the measurement uncertainties). A substantial majority of cosmologists therefore believe the age problem is now resolved. New research from teams, including one led by Nobel laureate Adam Riess of the Space Telescope Science Institute in Baltimore, has found the universe to be between 12.5 and 13 billion years old, disagreeing with the Planck findings. Whether this stems merely from errors in data gathering, or is related to the as yet unexplained aspects of physics, such as Dark Energy or Dark Matter, has yet to be confirmed.


References


External links

* http://map.gsfc.nasa.gov/universe/uni_age.html {{Portal bar, Physics, Space Obsolete scientific theories Physical cosmology