coronal discharge
   HOME

TheInfoList



OR:

A corona discharge is an
electrical discharge An electric discharge is the release and transmission of electricity in an applied electric field through a medium such as a gas (ie., an outgoing flow of electric current through a non-metal medium).American Geophysical Union, National Research ...
caused by the
ionization Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecul ...
of a
fluid In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
such as air surrounding a conductor carrying a high voltage. It represents a local region where the air (or other fluid) has undergone electrical breakdown and become conductive, allowing charge to continuously leak off the conductor into the air. A corona discharge occurs at locations where the strength of the
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field ...
( potential gradient) around a conductor exceeds the dielectric strength of the air. It is often seen as a bluish glow in the air adjacent to pointed metal conductors carrying high voltages, and emits light by the same mechanism as a gas discharge lamp. In many high voltage applications, corona is an unwanted side effect. Corona discharge from high voltage electric power
transmission line In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmi ...
s constitutes an economically significant waste of energy for utilities. In high voltage equipment like
cathode ray tube A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms ( oscilloscope), ...
televisions,
radio transmitter In electronics and telecommunications, a radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the ...
s, X-ray machines, and
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
s, the current leakage caused by coronas can constitute an unwanted load on the circuit. In the air, coronas generate gases such as
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the l ...
(O3) and
nitric oxide Nitric oxide (nitrogen oxide or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its ...
(NO), and in turn,
nitrogen dioxide Nitrogen dioxide is a chemical compound with the formula . It is one of several nitrogen oxides. is an intermediate in the industrial synthesis of nitric acid, millions of tons of which are produced each year for use primarily in the productio ...
(NO2), and thus
nitric acid Nitric acid is the inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but older samples tend to be yellow cast due to decomposition into oxides of nitrogen. Most commercially available ni ...
(HNO3) if
water vapor (99.9839 °C) , - , Boiling point , , - , specific gas constant , 461.5 J/( kg·K) , - , Heat of vaporization , 2.27 MJ/kg , - , Heat capacity , 1.864 kJ/(kg·K) Water vapor, water vapour or aqueous vapor is the gaseous p ...
is present. These gases are corrosive and can degrade and embrittle nearby materials, and are also toxic to humans and the environment. Corona discharges can often be suppressed by improved insulation,
corona ring A corona ring, more correctly referred to as an anti-corona ring, is a toroid of conductive material, usually metal, which is attached to a terminal or other irregular hardware piece of high voltage equipment. The purpose of the corona ring is t ...
s, and making high voltage electrodes in smooth rounded shapes. However, controlled corona discharges are used in a variety of processes such as air filtration,
photocopier A photocopier (also called copier or copy machine, and formerly Xerox machine, the generic trademark) is a machine that makes copies of documents and other visual images onto paper or plastic film quickly and cheaply. Most modern photocopier ...
s, and
ozone generator Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the lo ...
s.


Introduction

A corona discharge is a process by which a current flows from an electrode with a high
potential Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple r ...
into a neutral fluid, usually air, by ionizing that fluid so as to create a region of plasma around the electrode. The ions generated eventually pass the charge to nearby areas of lower potential, or recombine to form neutral gas molecules. When the potential gradient (electric field) is large enough at a point in the fluid, the fluid at that point ionizes and it becomes conductive. If a charged object has a sharp point, the electric field strength around that point will be much higher than elsewhere. Air near the electrode can become ionized (partially conductive), while regions more distant do not. When the air near the point becomes conductive, it has the effect of increasing the apparent size of the conductor. Since the new conductive region is less sharp, the ionization may not extend past this local region. Outside this region of ionization and conductivity, the charged particles slowly find their way to an oppositely charged object and are neutralized. Along with the similar
brush discharge A brush discharge is an electrical disruptive discharge similar to a corona discharge that takes place at an electrode with a high voltage applied to it, embedded in a nonconducting fluid, usually air. It is characterized by multiple luminous wr ...
, the corona is often called a "single-electrode discharge", as opposed to a "two-electrode discharge" – an
electric arc An electric arc, or arc discharge, is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma; the plasma may produce visible light. ...
. A corona forms only when the conductor is widely enough separated from conductors at the opposite potential that an arc cannot jump between them. If the geometry and gradient are such that the ionized region continues to grow until it reaches another conductor at a lower potential, a low resistance conductive path between the two will be formed, resulting in an
electric spark An electric spark is an abrupt electrical discharge that occurs when a sufficiently high electric field creates an ionized, electrically conductive channel through a normally-insulating medium, often air or other gases or gas mixtures. Michael F ...
or
electric arc An electric arc, or arc discharge, is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma; the plasma may produce visible light. ...
, depending upon the source of the electric field. If the source continues to supply current, a spark will evolve into a continuous discharge called an arc. Corona discharge forms only when the
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field ...
(potential gradient) at the surface of the conductor exceeds a critical value, the dielectric strength or disruptive potential gradient of the fluid. In air at sea level pressure of 101 kPa, the critical value is roughly 30 kV/cm, but this decreases with pressure, therefore, corona discharge is more of a problem at high altitudes. Corona discharge usually forms at highly curved regions on electrodes, such as sharp corners, projecting points, edges of metal surfaces, or small diameter wires. The high curvature causes a high potential gradient at these locations so that the air breaks down and forms plasma there first. On sharp points in the air, corona can start at potentials of 2–6 kV. In order to suppress corona formation, terminals on high voltage equipment are frequently designed with smooth large-diameter rounded shapes like balls or toruses.
Corona ring A corona ring, more correctly referred to as an anti-corona ring, is a toroid of conductive material, usually metal, which is attached to a terminal or other irregular hardware piece of high voltage equipment. The purpose of the corona ring is t ...
s are often added to insulators of high voltage transmission lines. Coronas may be ''positive'' or ''negative''. This is determined by the polarity of the voltage on the highly curved electrode. If the curved electrode is positive with respect to the flat electrode, it has a '' positive corona''; if it is negative, it has a '' negative corona''. (See below for more details.) The physics of positive and negative coronas are strikingly different. This asymmetry is a result of the great difference in mass between electrons and positively charged ions, with only the
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
having the ability to undergo a significant degree of ionizing
inelastic collision An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved due to the action of internal friction. In collisions of macroscopic bodies, some kinetic energy is turned into vibrational ene ...
at common temperatures and pressures. An important reason for considering coronas is the production of
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the l ...
around conductors undergoing corona processes in air. A negative corona generates much more ozone than the corresponding positive corona.


Applications

Corona discharge has a number of commercial and industrial applications: * Removal of unwanted electric charges from the surface of aircraft in flight and thus avoiding the detrimental effect of uncontrolled electrical discharge pulses on the performance of avionic systems * Manufacture of
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the l ...
* Sanitization of pool water * In an electrostatic precipitator, removal of solid pollutants from a waste gas stream, or scrubbing particles from the air in air-conditioning systems *
Photocopying A photocopier (also called copier or copy machine, and formerly Xerox machine, the generic trademark) is a machine that makes copies of documents and other visual images onto paper or plastic film quickly and cheaply. Most modern photocopier ...
*
Air ioniser An air ioniser (or negative ion generator or Chizhevsky's chandelier) is a device that uses high voltage to ionise (electrically charge) air molecules. Negative ions, or anions, are particles with one or more extra electrons, conferring a net ...
s * Production of photons for Kirlian photography to expose photographic film * EHD thrusters, lifters, and other ionic wind devices * Nitrogen laser * Ionization of a gaseous sample for subsequent analysis in a
mass spectrometer Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is us ...
or an ion mobility spectrometer * Static charge neutralization, as applied through
antistatic device An antistatic device is any device that reduces, dampens, or otherwise inhibits electrostatic discharge, or ESD, which is the buildup or discharge of static electricity. ESD can damage electrical components such as computer hard drives, and even i ...
s like ionizing bars * Refrigeration of electronic devices by forced convection Coronas can be used to generate charged surfaces, which is an effect used in electrostatic copying (
photocopying A photocopier (also called copier or copy machine, and formerly Xerox machine, the generic trademark) is a machine that makes copies of documents and other visual images onto paper or plastic film quickly and cheaply. Most modern photocopier ...
). They can also be used to remove particulate matter from air streams by first charging the air, and then passing the charged stream through a comb of alternating polarity, to deposit the charged particles onto oppositely charged plates. The free radicals and ions generated in corona reactions can be used to scrub the air of certain noxious products, through chemical reactions, and can be used to produce
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the l ...
.


Problems

Coronas can generate audible and radio-frequency noise, particularly near
electric power transmission Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a ''transmission network''. This is d ...
lines. Therefore, power transmission equipment is designed to minimize the formation of corona discharge. Corona discharge is generally undesirable in: *
Electric power transmission Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a ''transmission network''. This is d ...
, where it causes: ** Power loss ** Audible noise ** Electromagnetic interference ** Purple glow **
Ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the l ...
production ** Insulation damage ** Possible distress in animals that are sensitive to ultraviolet light * Electrical components such as
transformer A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer' ...
s,
capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of ...
s,
electric motor An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate f ...
s, and generators: ** Corona can progressively damage the insulation inside these devices, leading to equipment failure **
Elastomer An elastomer is a polymer with viscoelasticity (i.e. both viscosity and Elasticity (physics), elasticity) and with weak intermolecular forces, generally low Young's modulus and high Deformation (mechanics), failure strain compared with other mate ...
items such as O-rings can suffer
ozone cracking Cracks can be formed in many different elastomers by ozone attack, and the characteristic form of attack of vulnerable rubbers is known as ozone cracking. The problem was formerly very common, especially in tires, but is now rarely seen in those ...
** Plastic film capacitors operating at mains voltage can suffer progressive loss of capacitance as corona discharges cause local vaporization of the metallization In many cases, coronas can be suppressed by
corona ring A corona ring, more correctly referred to as an anti-corona ring, is a toroid of conductive material, usually metal, which is attached to a terminal or other irregular hardware piece of high voltage equipment. The purpose of the corona ring is t ...
s, toroidal devices that serve to spread the electric field over a larger areas and decrease the field gradient below the corona threshold.


Mechanism

Corona discharge occurs when the electric field is strong enough to create a chain reaction; electrons in the air collide with atoms hard enough to ionize them, creating more free electrons that ionize more atoms. The diagrams below illustrate at a microscopic scale the process which creates a corona in the air next to a pointed electrode carrying a high negative voltage with respect to ground. The process is: # A neutral atom or molecule, in a region of the strong electric field (such as the high potential gradient near the curved electrode), is ionized by a natural environmental event (for example, being struck by an ultraviolet
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
or
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
particle), to create a positive ion and a free
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
.
# The electric field accelerates these oppositely charged particles in opposite directions, separating them, preventing their recombination, and imparting kinetic energy to each of them. # The electron has a much higher charge/mass ratio and so is accelerated to a higher velocity than the positive ion. It gains enough energy from the field that when it strikes another atom it ionizes it, knocking out another electron, and creating another positive ion. These electrons are accelerated and collide with other atoms, creating further electron/positive-ion pairs, and these electrons collide with more atoms, in a chain reaction process called an ''
electron avalanche An electron avalanche is a process in which a number of free electrons in a transmission medium are subjected to strong acceleration by an electric field and subsequently collide with other atoms of the medium, thereby ionizing them (impact ioniza ...
''. Both positive and negative coronas rely on electron avalanches. In a positive corona, all the electrons are attracted inward toward the nearby positive electrode and the ions are repelled outwards. In a negative corona, the ions are attracted inward and the electrons are repelled outwards.
# The glow of the corona is caused by electrons recombining with positive ions to form neutral atoms. When the electron falls back to its original energy level, it releases a photon of light. The photons serve to ionize other atoms, maintaining the creation of electron avalanches.
# At a certain distance from the electrode, the electric field becomes low enough that it no longer imparts enough energy to the electrons to ionize atoms when they collide. This is the outer edge of the corona. Outside this, the ions move through the air without creating new ions. The outward moving ions are attracted to the opposite electrode and eventually reach it and combine with electrons from the electrode to become neutral atoms again, completing the circuit. Thermodynamically, a corona is a very ''
nonequilibrium Non-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of macroscopic quantities (non-equilibrium state variables) that represent an ext ...
'' process, creating a non-thermal plasma. The avalanche mechanism does not release enough energy to heat the gas in the corona region generally and ionize it, as occurs in an
electric arc An electric arc, or arc discharge, is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma; the plasma may produce visible light. ...
or spark. Only a small number of gas molecules take part in the electron avalanches and are ionized, having energies close to the ionization energy of 1–3 ev, the rest of the surrounding gas is close to ambient temperature. The onset voltage of corona or corona inception voltage (CIV) can be found with '' Peek's law'' (1929), formulated from empirical observations. Later papers derived more accurate formulas.


Positive coronas


Properties

A positive corona is manifested as a uniform plasma across the length of a conductor. It can often be seen glowing blue/white, though many of the emissions are in the ultraviolet. The uniformity of the plasma is caused by the homogeneous source of secondary avalanche electrons described in the mechanism section, below. With the same geometry and voltages, it appears a little smaller than the corresponding negative corona, owing to the lack of a non-ionising plasma region between the inner and outer regions. A positive corona has a much lower density of free electrons compared to a negative corona; perhaps a thousandth of the electron density, and a hundredth of the total number of electrons. However, the electrons in a positive corona are concentrated close to the surface of the curved conductor, in a region of the high potential gradient (and therefore the electrons have high energy), whereas in a negative corona many of the electrons are in the outer, lower-field areas. Therefore, if electrons are to be used in an application which requires high activation energy, positive coronas may support a greater reaction constant than corresponding negative coronas; though the total number of electrons may be lower, the number of very high energy electrons may be higher. Coronas are efficient producers of ozone in the air. A positive corona generates much less ozone than the corresponding negative corona, as the reactions which produce ozone are relatively low-energy. Therefore, the greater number of electrons of a negative corona leads to increased production. Beyond the plasma, in the ''unipolar region'', the flow is of low-energy positive ions toward the flat electrode.


Mechanism

As with a negative corona, a positive corona is initiated by an exogenous ionization event in a region of a high potential gradient. The electrons resulting from the ionization are attracted ''toward'' the curved electrode, and the positive ions repelled from it. By undergoing inelastic collisions closer and closer to the curved electrode, further molecules are ionized in an electron avalanche. In a positive corona, secondary electrons, for further avalanches, are generated predominantly in the fluid itself, in the region outside the plasma or avalanche region. They are created by ionization caused by the photons emitted from that plasma in the various de-excitation processes occurring within the plasma after electron collisions, the thermal energy liberated in those collisions creating photons which are radiated into the gas. The electrons resulting from the ionization of a neutral gas molecule are then electrically attracted back toward the curved electrode, attracted ''into'' the plasma, and so begins the process of creating further avalanches inside the plasma.


Negative coronas


Properties

A negative corona is manifested in a non-uniform corona, varying according to the surface features and irregularities of the curved conductor. It often appears as tufts of the corona at sharp edges, the number of tufts altering with the strength of the field. The form of negative coronas is a result of its source of secondary avalanche electrons (see below). It appears a little larger than the corresponding positive corona, as electrons are allowed to drift out of the ionizing region, and so the plasma continues some distance beyond it. The total number of electrons and electron density is much greater than in the corresponding positive corona. However, they are of predominantly lower energy, owing to being in a region of lower potential gradient. Therefore, whilst for many reactions, the increased electron density will increase the reaction rate, the lower energy of the electrons will mean that reactions which require higher electron energy may take place at a lower rate.


Mechanism

Negative coronas are more complex than positive coronas in construction. As with positive coronas, the establishing of a corona begins with an exogenous ionization event generating a primary electron, followed by an electron avalanche. Electrons ionized from the neutral gas are not useful in sustaining the negative corona process by generating secondary electrons for further avalanches, as the general movement of electrons in a negative corona is outward from the curved electrode. For negative corona, instead, the dominant process generating secondary electrons is the
photoelectric effect The photoelectric effect is the emission of electrons when electromagnetic radiation, such as light, hits a material. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, and solid sta ...
, from the surface of the electrode itself. The
work function In solid-state physics, the work function (sometimes spelt workfunction) is the minimum thermodynamic work (i.e., energy) needed to remove an electron from a solid to a point in the vacuum immediately outside the solid surface. Here "immediately ...
of the electrons (the energy required to liberate the electrons from the surface) is considerably lower than the
ionization energy Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule ...
of air at standard temperatures and pressures, making it a more liberal source of secondary electrons under these conditions. Again, the source of energy for the electron-liberation is a high-energy photon from an atom within the plasma body relaxing after excitation from an earlier collision. The use of ionized neutral gas as a source of ionization is further diminished in a negative corona by the high-concentration of positive ions clustering around the curved electrode. Under other conditions, the collision of the positive species with the curved electrode can also cause electron liberation. The difference, then, between positive and negative coronas, in the matter of the generation of secondary electron avalanches, is that in a positive corona they are generated by the gas surrounding the plasma region, the new secondary electrons travelling inward, whereas in a negative corona they are generated by the curved electrode itself, the new secondary electrons travelling outward. A further feature of the structure of negative coronas is that as the electrons drift outwards, they encounter neutral molecules and, with
electronegative Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and b ...
s (such as
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
and
water vapor (99.9839 °C) , - , Boiling point , , - , specific gas constant , 461.5 J/( kg·K) , - , Heat of vaporization , 2.27 MJ/kg , - , Heat capacity , 1.864 kJ/(kg·K) Water vapor, water vapour or aqueous vapor is the gaseous p ...
), combine to produce negative ions. These negative ions are then attracted to the positive uncurved electrode, completing the 'circuit'.


Electrical wind

Ionized gases produced in a corona discharge are accelerated by the electric field, producing a movement of gas or '' electrical wind''. The air movement associated with a discharge current of a few hundred microamperes can blow out a small candle flame within about 1 cm of a discharge point. A pinwheel, with radial metal spokes and pointed tips bent to point along the circumference of a circle, can be made to rotate if energized by a corona discharge; the rotation is due to the differential electric attraction between the metal spokes and the space charge shield region that surrounds the tips.


See also

*
Alternating current Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time in contrast to direct current (DC) which flows only in one direction. Alternating current is the form in whic ...
* Atmospheric pressure chemical ionization *
Crookes tube A Crookes tube (also Crookes–Hittorf tube) is an early experimental electrical discharge tube, with partial vacuum, invented by English physicist William Crookes and others around 1869-1875, in which cathode rays, streams of electrons, were ...
*
Dielectric barrier discharge Dielectric-barrier discharge (DBD) is the electrical discharge between two electrodes separated by an insulating dielectric barrier. Originally called silent (inaudible) discharge and also known as ozone production discharge or partial disch ...
* Kirlian photography * List of plasma physics articles * St. Elmo's fire


References


Further reading

* * * * *


External links


Additional information about corona, its effects, characteristics and preventative measures
{{Authority control Electrical breakdown Plasma physics ja:放電#コロナ放電(局部破壊放電)