HOME

TheInfoList



OR:

The chalcogens (ore forming) ( ) are the
chemical element A chemical element is a species of atoms that have a given number of protons in their atomic nucleus, nuclei, including the pure Chemical substance, substance consisting only of that species. Unlike chemical compounds, chemical elements canno ...
s in group 16 of the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
. This group is also known as the oxygen family. Group 16 consists of the elements
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
(O),
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formul ...
(S),
selenium Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal (more rarely considered a metalloid) with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, ...
(Se),
tellurium Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionall ...
(Te), and the
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
elements polonium (Po) and livermorium (Lv). Often, oxygen is treated separately from the other chalcogens, sometimes even excluded from the scope of the term "chalcogen" altogether, due to its very different chemical behavior from sulfur, selenium, tellurium, and polonium. The word "chalcogen" is derived from a combination of the Greek word () principally meaning
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pink ...
(the term was also used for
bronze Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals, such as phosphorus, or metalloids suc ...
/
brass Brass is an alloy of copper (Cu) and zinc (Zn), in proportions which can be varied to achieve different mechanical, electrical, and chemical properties. It is a substitutional alloy: atoms of the two constituents may replace each other wi ...
, any metal in the poetic sense, ore or
coin A coin is a small, flat (usually depending on the country or value), round piece of metal or plastic used primarily as a medium of exchange or legal tender. They are standardized in weight, and produced in large quantities at a mint in order ...
), and the Latinized Greek word , meaning ''born'' or ''produced''. Sulfur has been known since antiquity, and oxygen was recognized as an element in the 18th century. Selenium, tellurium and polonium were discovered in the 19th century, and livermorium in 2000. All of the chalcogens have six valence electrons, leaving them two electrons short of a full outer shell. Their most common
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
s are −2, +2, +4, and +6. They have relatively low
atomic radii The atomic radius of a chemical element is a measure of the size of its atom, usually the mean or typical distance from the center of the nucleus to the outermost isolated electron. Since the boundary is not a well-defined physical entity, there ...
, especially the lighter ones. Lighter chalcogens are typically
nontoxic Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subst ...
in their elemental form, and are often critical to life, while the heavier chalcogens are typically
toxic Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a sub ...
. All of the naturally occurring chalcogens have some role in biological functions, either as a nutrient or a toxin. Selenium is an important nutrient (among others as a building block of
selenocysteine Selenocysteine (symbol Sec or U, in older publications also as Se-Cys) is the 21st proteinogenic amino acid. Selenoproteins contain selenocysteine residues. Selenocysteine is an analogue of the more common cysteine with selenium in place of the ...
) but is also commonly toxic. Tellurium often has unpleasant effects (although some organisms can use it), and polonium (especially the
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass num ...
polonium-210 Polonium-210 (210Po, Po-210, historically radium F) is an isotope of polonium. It undergoes alpha decay to stable 206Pb with a half-life of 138.376 days (about months), the longest half-life of all naturally occurring polonium isotopes. First ...
) is always harmful as a result of its radioactivity. Sulfur has more than 20
allotrope Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical State of matter, state, known as allotropes of the elements. Allotropes are different structural modifications o ...
s, oxygen has nine, selenium has at least eight, polonium has two, and only one crystal structure of tellurium has so far been discovered. There are numerous organic chalcogen compounds. Not counting oxygen, organic sulfur compounds are generally the most common, followed by organic selenium compounds and organic tellurium compounds. This trend also occurs with chalcogen
pnictides A pnictogen ( or ; from grc, πνῑ́γω "to choke" and -gen, "generator") is any of the chemical elements in group 15 of the periodic table. Group 15 is also known as the nitrogen group or nitrogen family. Group 15 consists of the ele ...
and compounds containing chalcogens and carbon group elements. Oxygen is generally obtained by separation of air into nitrogen and oxygen. Sulfur is extracted from oil and natural gas. Selenium and tellurium are produced as byproducts of copper refining. Polonium is most available in naturally occurring actinide-containing materials. Livermorium has been synthesized in particle accelerators. The primary use of elemental oxygen is in steelmaking. Sulfur is mostly converted into
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular fo ...
, which is heavily used in the chemical industry. Selenium's most common application is glassmaking. Tellurium compounds are mostly used in optical disks, electronic devices, and solar cells. Some of polonium's applications are due to its radioactivity.


Properties


Atomic and physical

Chalcogens show similar patterns in
electron configuration In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon ato ...
, especially in the outermost shells, where they all have the same number of valence electrons, resulting in similar trends in chemical behavior: All chalcogens have six valence electrons. All of the solid, stable chalcogens are soft and do not conduct heat well. Electronegativity decreases towards the chalcogens with higher atomic numbers. Density, melting and boiling points, and atomic and
ionic radii Ionic radius, ''r''ion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation ...
tend to increase towards the chalcogens with higher atomic numbers.


Isotopes

Out of the six known chalcogens, one (oxygen) has an atomic number equal to a nuclear magic number, which means that their
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
tend to have increased stability towards radioactive decay. Oxygen has three stable isotopes, and 14 unstable ones. Sulfur has four stable isotopes, 20 radioactive ones, and one
isomer In chemistry, isomers are molecules or polyatomic ions with identical molecular formulae – that is, same number of atoms of each element – but distinct arrangements of atoms in space. Isomerism is existence or possibility of isomers. Is ...
. Selenium has six observationally stable or nearly stable isotopes, 26 radioactive isotopes, and 9 isomers. Tellurium has eight stable or nearly stable isotopes, 31 unstable ones, and 17 isomers. Polonium has 42 isotopes, none of which are stable. It has an additional 28 isomers. In addition to the stable isotopes, some radioactive chalcogen isotopes occur in nature, either because they are decay products, such as 210Po, because they are
primordial Primordial may refer to: * Primordial era, an era after the Big Bang. See Chronology of the universe * Primordial sea (a.k.a. primordial ocean, ooze or soup). See Abiogenesis * Primordial nuclide, nuclides, a few radioactive, that formed before t ...
, such as 82Se, because of
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
spallation Spallation is a process in which fragments of material (spall) are ejected from a body due to impact or stress. In the context of impact mechanics it describes ejection of material from a target during impact by a projectile. In planetary p ...
, or via
nuclear fission Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radio ...
of uranium. Livermorium isotopes 290Lv through 293Lv have been discovered; the most stable livermorium isotope is 293Lv, which has a half-life of 0.061 seconds. Among the lighter chalcogens (oxygen and sulfur), the most neutron-poor isotopes undergo proton emission, the moderately neutron-poor isotopes undergo
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. ...
or β+ decay, the moderately neutron-rich isotopes undergo β decay, and the most neutron rich isotopes undergo neutron emission. The middle chalcogens (selenium and tellurium) have similar decay tendencies as the lighter chalcogens, but their isotopes do not undergo proton emission and some of the most neutron-deficient isotopes of tellurium undergo
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an at ...
. Polonium's isotopes tend to decay with alpha or beta decay. Isotopes with
nuclear spin In atomic physics, the spin quantum number is a quantum number (designated ) which describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. The phrase was originally used to describe ...
s are more common among the chalcogens selenium and tellurium than they are with sulfur.


Allotropes

Oxygen's most common
allotrope Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical State of matter, state, known as allotropes of the elements. Allotropes are different structural modifications o ...
is diatomic oxygen, or O2, a reactive paramagnetic molecule that is ubiquitous to
aerobic organism Aerobic means "requiring air," in which "air" usually means oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, ...
s and has a blue color in its liquid state. Another allotrope is O3, or
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the l ...
, which is three oxygen atoms bonded together in a bent formation. There is also an allotrope called
tetraoxygen The tetraoxygen molecule (O4), also called oxozone, is an allotrope of oxygen consisting of four oxygen atoms. History Tetraoxygen was first predicted in 1924 by Gilbert N. Lewis, who proposed it as an explanation for the failure of liquid oxyg ...
, or O4, and six allotropes of solid oxygen including "red oxygen", which has the formula O8. Sulfur has over 20 known allotropes, which is more than any other element except
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ...
. The most common allotropes are in the form of eight-atom rings, but other molecular allotropes that contain as few as two atoms or as many as 20 are known. Other notable sulfur allotropes include rhombic sulfur and
monoclinic In crystallography, the monoclinic crystal system is one of the seven crystal systems. A crystal system is described by three vectors. In the monoclinic system, the crystal is described by vectors of unequal lengths, as in the orthorhombic ...
sulfur. Rhombic sulfur is the more stable of the two allotropes. Monoclinic sulfur takes the form of long needles and is formed when liquid sulfur is cooled to slightly below its melting point. The atoms in liquid sulfur are generally in the form of long chains, but above 190 °C, the chains begin to break down. If liquid sulfur above 190 °C is frozen very rapidly, the resulting sulfur is amorphous or "plastic" sulfur. Gaseous sulfur is a mixture of diatomic sulfur (S2) and 8-atom rings. Selenium has at least eight distinct allotropes. The gray allotrope, commonly referred to as the "metallic" allotrope, despite not being a metal, is stable and has a hexagonal
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric pattern ...
. The gray allotrope of selenium is soft, with a
Mohs hardness The Mohs scale of mineral hardness () is a qualitative ordinal scale, from 1 to 10, characterizing scratch resistance of various minerals through the ability of harder material to scratch softer material. The scale was introduced in 1812 by ...
of 2, and brittle. Four other allotropes of selenium are metastable. These include two
monoclinic In crystallography, the monoclinic crystal system is one of the seven crystal systems. A crystal system is described by three vectors. In the monoclinic system, the crystal is described by vectors of unequal lengths, as in the orthorhombic ...
red allotropes and two
amorphous In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid, glassy solid) is a solid that lacks the long-range order that is characteristic of a crystal. Etymology The term comes from the Greek language, Gr ...
allotropes, one of which is red and one of which is black. The red allotrope converts to the black allotrope in the presence of heat. The gray allotrope of selenium is made from
spiral In mathematics, a spiral is a curve which emanates from a point, moving farther away as it revolves around the point. Helices Two major definitions of "spiral" in the American Heritage Dictionary are: Tellurium is not known to have any allotropes, although its typical form is hexagonal. Polonium has two allotropes, which are known as α-polonium and β-polonium. α-polonium has a cubic crystal structure and converts to the rhombohedral β-polonium at 36 °C. The chalcogens have varying crystal structures. Oxygen's crystal structure is
monoclinic In crystallography, the monoclinic crystal system is one of the seven crystal systems. A crystal system is described by three vectors. In the monoclinic system, the crystal is described by vectors of unequal lengths, as in the orthorhombic ...
, sulfur's is
orthorhombic In crystallography, the orthorhombic crystal system is one of the 7 crystal systems. Orthorhombic lattices result from stretching a cubic lattice along two of its orthogonal pairs by two different factors, resulting in a rectangular prism with ...
, selenium and tellurium have the
hexagonal In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A '' regular hexagon'' has ...
crystal structure, while polonium has a cubic crystal structure.


Chemical

Oxygen, sulfur, and selenium are
nonmetal In chemistry, a nonmetal is a chemical element that generally lacks a predominance of metallic properties; they range from colorless gases (like hydrogen) to shiny solids (like carbon, as graphite). The electrons in nonmetals behave differentl ...
s, and tellurium is a
metalloid A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on which elements are ...
, meaning that its chemical properties are between those of a
metal A metal (from ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, e ...
and those of a nonmetal. It is not certain whether polonium is a metal or a metalloid. Some sources refer to polonium as a metalloid, although it has some metallic properties. Also, some allotropes of selenium display characteristics of a metalloid, even though selenium is usually considered a nonmetal. Even though oxygen is a chalcogen, its chemical properties are different from those of other chalcogens. One reason for this is that the heavier chalcogens have vacant
d-orbital In atomic theory and quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of finding any electron of an atom in any sp ...
s. Oxygen's electronegativity is also much higher than those of the other chalcogens. This makes oxygen's electric polarizability several times lower than those of the other chalcogens. For
covalent bond A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between ato ...
ing a chalcogen may accept two electrons according to the octet rule, leaving two
lone pair In chemistry, a lone pair refers to a pair of valence electrons that are not shared with another atom in a covalent bondIUPAC '' Gold Book'' definition''lone (electron) pair''/ref> and is sometimes called an unshared pair or non-bonding pair. L ...
s. When an atom forms two
single bond In chemistry, a single bond is a chemical bond between two atoms involving two valence electrons. That is, the atoms share one pair of electrons where the bond forms. Therefore, a single bond is a type of covalent bond. When shared, each of ...
s, they form an angle between 90° and 120°. In 1+
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
s, such as , a chalcogen forms three
molecular orbital In chemistry, a molecular orbital is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of find ...
s arranged in a
trigonal pyramidal In chemistry, a trigonal pyramid is a molecular geometry with one atom at the apex and three atoms at the corners of a trigonal base, resembling a tetrahedron (not to be confused with the tetrahedral geometry). When all three atoms at the corne ...
fashion and one lone pair. Double bonds are also common in chalcogen compounds, for example in chalcogenates (see below). The
oxidation number In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
of the most common chalcogen compounds with positive metals is −2. However the tendency for chalcogens to form compounds in the −2 state decreases towards the heavier chalcogens. Other oxidation numbers, such as −1 in
pyrite The mineral pyrite (), or iron pyrite, also known as fool's gold, is an iron sulfide with the chemical formula Iron, FeSulfur, S2 (iron (II) disulfide). Pyrite is the most abundant sulfide mineral. Pyrite's metallic Luster (mineralogy), lust ...
and
peroxide In chemistry, peroxides are a group of compounds with the structure , where R = any element. The group in a peroxide is called the peroxide group or peroxo group. The nomenclature is somewhat variable. The most common peroxide is hydrogen p ...
, do occur. The highest formal
oxidation number In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
is +6. This oxidation number is found in
sulfate The sulfate or sulphate ion is a polyatomic anion with the empirical formula . Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many ...
s, selenates, tellurates, polonates, and their corresponding acids, such as
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular fo ...
. Oxygen is the most
electronegative Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
element except for
fluorine Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. As the most electronegative reactive element, it is extremely reactiv ...
, and forms compounds with almost all of the chemical elements, including some of the
noble gas The noble gases (historically also the inert gases; sometimes referred to as aerogens) make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low ch ...
es. It commonly bonds with many metals and metalloids to form
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
s, including
iron oxide Iron oxides are chemical compounds composed of iron and oxygen. Several iron oxides are recognized. All are black magnetic solids. Often they are non-stoichiometric. Oxyhydroxides are a related class of compounds, perhaps the best known of wh ...
, titanium oxide, and
silicon oxide Silicon oxide may refer to either of the following: * Silicon dioxide or quartz, SiO2, very well characterized *Silicon monoxide Silicon monoxide is the chemical compound with the formula SiO where silicon is present in the oxidation state +2. In ...
. Oxygen's most common
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
is −2, and the oxidation state −1 is also relatively common. With
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
it forms water and
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3 ...
. Organic oxygen compounds are ubiquitous in
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clayden, J ...
. Sulfur's oxidation states are −2, +2, +4, and +6. Sulfur-containing analogs of oxygen compounds often have the prefix ''thio-''. Sulfur's chemistry is similar to oxygen's, in many ways. One difference is that sulfur-sulfur
double bond In chemistry, a double bond is a covalent bond between two atoms involving four bonding electrons as opposed to two in a single bond. Double bonds occur most commonly between two carbon atoms, for example in alkenes. Many double bonds exist betwee ...
s are far weaker than oxygen-oxygen double bonds, but sulfur-sulfur
single bond In chemistry, a single bond is a chemical bond between two atoms involving two valence electrons. That is, the atoms share one pair of electrons where the bond forms. Therefore, a single bond is a type of covalent bond. When shared, each of ...
s are stronger than oxygen-oxygen single bonds. Organic sulfur compounds such as
thiol In organic chemistry, a thiol (; ), or thiol derivative, is any organosulfur compound of the form , where R represents an alkyl or other organic substituent. The functional group itself is referred to as either a thiol group or a sulfhydryl gro ...
s have a strong specific smell, and a few are utilized by some organisms. Selenium's oxidation states are −2, +4, and +6. Selenium, like most chalcogens, bonds with oxygen. There are some organic selenium compounds, such as
selenoproteins In molecular biology a selenoprotein is any protein that includes a selenocysteine (Sec, U, Se-Cys) amino acid residue. Among functionally characterized selenoproteins are five glutathione peroxidases (GPX) and three thioredoxin reductases, (TrxR/T ...
. Tellurium's oxidation states are −2, +2, +4, and +6. Tellurium forms the oxides tellurium monoxide,
tellurium dioxide Tellurium dioxide (TeO2) is a solid oxide of tellurium. It is encountered in two different forms, the yellow orthorhombic mineral tellurite, β-TeO2, and the synthetic, colourless tetragonal (paratellurite), α-TeO2. Most of the information regar ...
, and
tellurium trioxide Tellurium trioxide ( Te O3) is an inorganic chemical compound of tellurium and oxygen. In this compound, tellurium is in the +6 oxidation state. Polymorphs There are two forms, yellow-red α-TeO3 and grey, rhombohedral, β-TeO3 which is less reac ...
. Polonium's oxidation states are +2 and +4. There are many acids containing chalcogens, including sulfuric acid,
sulfurous acid Sulfurous acid (also sulfuric(IV) acid, sulphurous acid (UK), sulphuric(IV) acid (UK)) is the chemical compound with the formula . There is no evidence that sulfurous acid exists in solution, but the molecule has been detected in the gas phase ...
, selenic acid, and
telluric acid Telluric acid is a chemical compound with the formula , often written as . It is a white crystalline solid made up of octahedral molecules which persist in aqueous solution. In the solid state, there are two forms, rhombohedral and monoclinic, a ...
. All hydrogen chalcogenides are toxic except for
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
. Oxygen ions often come in the forms of
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
ions (),
peroxide In chemistry, peroxides are a group of compounds with the structure , where R = any element. The group in a peroxide is called the peroxide group or peroxo group. The nomenclature is somewhat variable. The most common peroxide is hydrogen p ...
ions (), and
hydroxide Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. ...
ions (). Sulfur ions generally come in the form of
sulfide Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. ''Sulfide'' also refers to chemical compounds la ...
s (),
sulfite Sulfites or sulphites are compounds that contain the sulfite ion (or the sulfate(IV) ion, from its correct systematic name), . The sulfite ion is the conjugate base of bisulfite. Although its acid ( sulfurous acid) is elusive, its salts are w ...
s (),
sulfate The sulfate or sulphate ion is a polyatomic anion with the empirical formula . Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many ...
s (), and
thiosulfate Thiosulfate ( IUPAC-recommended spelling; sometimes thiosulphate in British English) is an oxyanion of sulfur with the chemical formula . Thiosulfate also refers to the compounds containing this anion, which are the salts of thiosulfuric acid, e ...
s (). Selenium ions usually come in the form of selenides () and selenates (). Tellurium ions often come in the form of tellurates (). Molecules containing metal bonded to chalcogens are common as minerals. For example,
pyrite The mineral pyrite (), or iron pyrite, also known as fool's gold, is an iron sulfide with the chemical formula Iron, FeSulfur, S2 (iron (II) disulfide). Pyrite is the most abundant sulfide mineral. Pyrite's metallic Luster (mineralogy), lust ...
(FeS2) is an
iron ore Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in color from dark grey, bright yellow, or deep purple to rusty red. The iron is usually found in the ...
, and the rare mineral calaverite is the ditelluride . Although all group 16 elements of the periodic table, including oxygen, can be defined as chalcogens, oxygen and oxides are usually distinguished from chalcogens and chalcogenides. The term ''chalcogenide'' is more commonly reserved for
sulfide Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. ''Sulfide'' also refers to chemical compounds la ...
s, selenides, and tellurides, rather than for
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
s. Except for polonium, the chalcogens are all fairly similar to each other chemically. They all form X2− ions when reacting with electropositive metals. Sulfide minerals and analogous compounds produce gases upon reaction with oxygen.


Compounds


With halogens

Chalcogens also form compounds with
halogen The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this grou ...
s known as chalcohalides, or chalcogen halides. The majority of simple chalcogen halides are well-known and widely used as chemical
reagent In chemistry, a reagent ( ) or analytical reagent is a substance or compound added to a system to cause a chemical reaction, or test if one occurs. The terms ''reactant'' and ''reagent'' are often used interchangeably, but reactant specifies a ...
s. However, more complicated chalcogen halides, such as sulfenyl, sulfonyl, and sulfuryl halides, are less well known to science. Out of the compounds consisting purely of chalcogens and halogens, there are a total of 13 chalcogen fluorides, nine chalcogen chlorides, eight chalcogen bromides, and six chalcogen iodides that are known. The heavier chalcogen halides often have significant molecular interactions. Sulfur fluorides with low valences are fairly unstable and little is known about their properties. However, sulfur fluorides with high valences, such as
sulfur hexafluoride Sulfur hexafluoride or sulphur hexafluoride (British spelling) is an inorganic compound with the formula SF6. It is a colorless, odorless, non- flammable, and non-toxic gas. has an octahedral geometry, consisting of six fluorine atoms attach ...
, are stable and well-known. Sulfur tetrafluoride is also a well-known sulfur fluoride. Certain selenium fluorides, such as selenium difluoride, have been produced in small amounts. The crystal structures of both
selenium tetrafluoride Selenium tetrafluoride ( Se F4) is an inorganic compound. It is a colourless liquid that reacts readily with water. It can be used as a fluorinating reagent in organic syntheses (fluorination of alcohols, carboxylic acids or carbonyl compounds) an ...
and
tellurium tetrafluoride Tellurium tetrafluoride, TeF4, is a stable, white, hygroscopic crystalline solid and is one of two fluorides of tellurium. The other binary fluoride is tellurium hexafluoride.''Inorganic Chemistry'',Egon Wiberg, Arnold Frederick Holleman Elsevie ...
are known. Chalcogen chlorides and bromides have also been explored. In particular, selenium dichloride and sulfur dichloride can react to form organic selenium compounds. Dichalcogen dihalides, such as Se2Cl2 also are known to exist. There are also mixed chalcogen-halogen compounds. These include SeSX, with X being chlorine or bromine. Such compounds can form in mixtures of
sulfur dichloride Sulfur dichloride is the chemical compound with the formula . This cherry-red liquid is the simplest sulfur chloride and one of the most common, and it is used as a precursor to organosulfur compounds. It is a highly corrosive and toxic substance ...
and selenium halides. These compounds have been fairly recently structurally characterized, as of 2008. In general, diselenium and disulfur chlorides and bromides are useful chemical reagents. Chalcogen halides with attached metal atoms are soluble in organic solutions. One example of such a compound is . Unlike selenium chlorides and bromides, selenium iodides have not been isolated, as of 2008, although it is likely that they occur in solution. Diselenium diiodide, however, does occur in equilibrium with selenium atoms and iodine molecules. Some tellurium halides with low valences, such as and , form
polymer A polymer (; Greek '' poly-'', "many" + '' -mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
s when in the solid state. These tellurium halides can be synthesized by the reduction of pure tellurium with superhydride and reacting the resulting product with tellurium tetrahalides. Ditellurium dihalides tend to get less stable as the halides become lower in atomic number and atomic mass. Tellurium also forms iodides with even fewer iodine atoms than diiodies. These include TeI and Te2I. These compounds have extended structures in the solid state. Halogens and chalcogens can also form halochalcogenate
anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
s.


Organic

Alcohol Alcohol most commonly refers to: * Alcohol (chemistry), an organic compound in which a hydroxyl group is bound to a carbon atom * Alcohol (drug), an intoxicant found in alcoholic drinks Alcohol may also refer to: Chemicals * Ethanol, one of sev ...
s,
phenol Phenol (also called carbolic acid) is an aromatic organic compound with the molecular formula . It is a white crystalline solid that is volatile. The molecule consists of a phenyl group () bonded to a hydroxy group (). Mildly acidic, it r ...
s and other similar compounds contain oxygen. However, in
thiol In organic chemistry, a thiol (; ), or thiol derivative, is any organosulfur compound of the form , where R represents an alkyl or other organic substituent. The functional group itself is referred to as either a thiol group or a sulfhydryl gro ...
s, selenols and
tellurol Tellurols are analogues of alcohols and phenols where tellurium replaces oxygen. Tellurols, selenols, and thiols have similar properties, but tellurols are the least stable. Although they are fundamental representatives of organotellurium compounds ...
s; sulfur, selenium, and tellurium replace oxygen. Thiols are better known than selenols or tellurols. Thiols are the most stable chalcogenols and tellurols are the least stable, being unstable in heat or light. Other organic chalcogen compounds include thioethers, selenoethers and telluroethers. Some of these, such as
dimethyl sulfide Dimethyl sulfide (DMS) or methylthiomethane is an organosulfur compound with the formula (CH3)2S. Dimethyl sulfide is a flammable liquid that boils at and has a characteristic disagreeable odor. It is a component of the smell produced from co ...
, diethyl sulfide, and dipropyl sulfide are commercially available. Selenoethers are in the form of R2Se or RSeR. Telluroethers such as dimethyl telluride are typically prepared in the same way as thioethers and selenoethers. Organic chalcogen compounds, especially organic sulfur compounds, have the tendency to smell unpleasant. Dimethyl telluride also smells unpleasant, and selenophenol is renowned for its "metaphysical stench". There are also thioketones,
selenoketone In chemistry, a selone (also known as a selenoketone) is the structural analog of a ketone where selenium replaces oxygen. Selenium-77 is one of the isotopes of selenium that is stable and naturally occurring, so selenone-containing chemicals can ...
s, and telluroketones. Out of these, thioketones are the most well-studied with 80% of chalcogenoketones papers being about them. Selenoketones make up 16% of such papers and telluroketones make up 4% of them. Thioketones have well-studied non-linear electric and photophysic properties. Selenoketones are less stable than thioketones and telluroketones are less stable than selenoketones. Telluroketones have the highest level of polarity of chalcogenoketones.


With metals

There is a very large number of metal chalcogenides. There are also ternary compounds containing
alkali metal The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K),The symbols Na and K for sodium and potassium are derived from their Latin names, ''natrium'' and ''kalium''; these are still the origins of the names ...
s and
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
s. Highly metal-rich metal chalcogenides, such as Lu7Te and Lu8Te have domains of the metal's crystal lattice containing chalcogen atoms. While these compounds do exist, analogous chemicals that contain
lanthanum Lanthanum is a chemical element with the symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements between l ...
, praseodymium, gadolinium, holmium, terbium, or ytterbium have not been discovered, as of 2008. The boron group metals aluminum,
gallium Gallium is a chemical element with the Symbol (chemistry), symbol Ga and atomic number 31. Discovered by France, French chemist Paul-Émile Lecoq de Boisbaudran in 1875, Gallium is in boron group, group 13 of the periodic table and is similar to ...
, and
indium Indium is a chemical element with the symbol In and atomic number 49. Indium is the softest metal that is not an alkali metal. It is a silvery-white metal that resembles tin in appearance. It is a post-transition metal that makes up 0.21 parts ...
also form bonds to chalcogens. The Ti3+ ion forms chalcogenide dimers such as Ti Tl5Se8. Metal chalcogenide dimers also occur as lower tellurides, such as Zr5Te6. Elemental chalcogens react with certain lanthanide compounds to form lanthanide clusters rich in chalcogens.
Uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
(IV) chalcogenol compounds also exist. There are also
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
chalcogenols which have potential to serve as
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
s and stabilize nanoparticles.


With pnictogens

Compounds with chalcogen-
phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ea ...
bonds have been explored for more than 200 years. These compounds include unsophisticated phosphorus chalcogenides as well as large molecules with biological roles and phosphorus-chalcogen compounds with metal clusters. These compounds have numerous applications, including organo-phosphate insecticides, strike-anywhere matches and
quantum dot Quantum dots (QDs) are semiconductor particles a few nanometres in size, having optical and electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanotechnology. When the ...
s. A total of 130,000 compounds with at least one phosphorus-sulfur bond, 6000 compounds with at least one phosphorus-selenium bond, and 350 compounds with at least one phosphorus-tellurium bond have been discovered. The decrease in the number of chalcogen-phosphorus compounds further down the periodic table is due to diminishing bond strength. Such compounds tend to have at least one phosphorus atom in the center, surrounded by four chalcogens and side chains. However, some phosphorus-chalcogen compounds also contain hydrogen (such as secondary
phosphine Phosphine (IUPAC name: phosphane) is a colorless, flammable, highly toxic compound with the chemical formula , classed as a pnictogen hydride. Pure phosphine is odorless, but technical grade samples have a highly unpleasant odor like rotting ...
chalcogenides) or nitrogen (such as dichalcogenoimidodiphosphates). Phosphorus selenides are typically harder to handle that phosphorus sulfides, and compounds in the form PxTey have not been discovered. Chalcogens also bond with other pnictogens, such as
arsenic Arsenic is a chemical element with the symbol As and atomic number 33. Arsenic occurs in many minerals, usually in combination with sulfur and metals, but also as a pure elemental crystal. Arsenic is a metalloid. It has various allotropes, b ...
,
antimony Antimony is a chemical element with the symbol Sb (from la, stibium) and atomic number 51. A lustrous gray metalloid, it is found in nature mainly as the sulfide mineral stibnite (Sb2S3). Antimony compounds have been known since ancient ti ...
, and
bismuth Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs ...
. Heavier chalcogen pnictides tend to form
ribbon A ribbon or riband is a thin band of material, typically cloth but also plastic or sometimes metal, used primarily as decorative binding and tying. Cloth ribbons are made of natural materials such as silk, cotton, and jute and of synthetic mat ...
-like polymers instead of individual molecules. Chemical formulas of these compounds include Bi2S3 and Sb2Se3. Ternary chalcogen pnictides are also known. Examples of these include P4O6Se and P3SbS3. salts containing chalcogens and pnictogens also exist. Almost all chalcogen pnictide salts are typically in the form of nxE4xsup>3−, where Pn is a pnictogen and E is a chalcogen. Tertiary phosphines can react with chalcogens to form compounds in the form of R3PE, where E is a chalcogen. When E is sulfur, these compounds are relatively stable, but they are less so when E is selenium or tellurium. Similarly, secondary phosphines can react with chalcogens to form secondary phosphine chalcogenides. However, these compounds are in a state of equilibrium with chalcogenophosphinous acid. Secondary phosphine chalcogenides are weak acids. Binary compounds consisting of antimony or arsenic and a chalcogen. These compounds tend to be colorful and can be created by a reaction of the constituent elements at temperatures of .


Other

Chalcogens form single bonds and double bonds with other carbon group elements than carbon, such as
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ...
,
germanium Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors ...
, and tin. Such compounds typically form from a reaction of carbon group halides and chalcogenol salts or chalcogenol bases. Cyclic compounds with chalcogens, carbon group elements, and boron atoms exist, and occur from the reaction of boron dichalcogenates and carbon group metal halides. Compounds in the form of M-E, where M is silicon, germanium, or tin, and E is sulfur, selenium or tellurium have been discovered. These form when carbon group
hydride In chemistry, a hydride is formally the anion of hydrogen( H−). The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride ...
s react or when heavier versions of
carbene In organic chemistry, a carbene is a molecule containing a neutral carbon atom with a valence of two and two unshared valence electrons. The general formula is or where the R represents substituents or hydrogen atoms. The term "carbene" m ...
s react. Sulfur and tellurium can bond with organic compounds containing both silicon and phosphorus. All of the chalcogens form
hydride In chemistry, a hydride is formally the anion of hydrogen( H−). The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride ...
s. In some cases this occurs with chalcogens bonding with two hydrogen atoms. However tellurium hydride and polonium hydride are both volatile and highly labile. Also, oxygen can bond to hydrogen in a 1:1 ratio as in
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3 ...
, but this compound is unstable. Chalcogen compounds form a number of interchalcogens. For instance, sulfur forms the toxic
sulfur dioxide Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a toxic gas responsible for the odor of burnt matches. It is released naturally by volcanic a ...
and
sulfur trioxide Sulfur trioxide (alternative spelling sulphur trioxide, also known as ''nisso sulfan'') is the chemical compound with the formula SO3. It has been described as "unquestionably the most important economically" sulfur oxide. It is prepared on an ind ...
. Tellurium also forms oxides. There are some chalcogen sulfides as well. These include selenium sulfide, an ingredient in some
shampoo Shampoo () is a hair care product, typically in the form of a viscous liquid, that is used for cleaning hair. Less commonly, shampoo is available in solid bar format. Shampoo is used by applying it to wet hair, massaging the product into the ...
s. Since 1990, a number of borides with chalcogens bonded to them have been detected. The chalcogens in these compounds are mostly sulfur, although some do contain selenium instead. One such chalcogen boride consists of two molecules of
dimethyl sulfide Dimethyl sulfide (DMS) or methylthiomethane is an organosulfur compound with the formula (CH3)2S. Dimethyl sulfide is a flammable liquid that boils at and has a characteristic disagreeable odor. It is a component of the smell produced from co ...
attached to a boron-hydrogen molecule. Other important boron-chalcogen compounds include macropolyhedral systems. Such compounds tend to feature sulfur as the chalcogen. There are also chalcogen borides with two, three, or four chalcogens. Many of these contain sulfur but some, such as Na2B2Se7 contain selenium instead.


History


Early discoveries

Sulfur has been known since ancient times and is mentioned in the
Bible The Bible (from Koine Greek , , 'the books') is a collection of religious texts or scriptures that are held to be sacred in Christianity Christianity is an Abrahamic monotheistic religion based on the life and teachings of Jesus ...
fifteen times. It was known to the
ancient Greeks Ancient Greece ( el, Ἑλλάς, Hellás) was a northeastern Mediterranean civilization, existing from the Greek Dark Ages of the 12th–9th centuries BC to the end of classical antiquity ( AD 600), that comprised a loose collection of cult ...
and commonly mined by the
ancient Romans In modern historiography, ancient Rome refers to Roman civilisation from the founding of the city of Rome in the 8th century BC to the collapse of the Western Roman Empire in the 5th century AD. It encompasses the Roman Kingdom (753–50 ...
. It was also historically used as a component of
Greek fire Greek fire was an incendiary weapon used by the Eastern Roman Empire beginning . Used to set fire to enemy ships, it consisted of a combustible compound emitted by a flame-throwing weapon. Some historians believe it could be ignited on contact w ...
. In the Middle Ages, it was a key part of alchemical experiments. In the 1700s and 1800s, scientists Joseph Louis Gay-Lussac and Louis-Jacques Thénard proved sulfur to be a chemical element. Early attempts to separate oxygen from air were hampered by the fact that air was thought of as a single element up to the 17th and 18th centuries.
Robert Hooke Robert Hooke FRS (; 18 July 16353 March 1703) was an English polymath active as a scientist, natural philosopher and architect, who is credited to be one of two scientists to discover microorganisms in 1665 using a compound microscope that ...
,
Mikhail Lomonosov Mikhail Vasilyevich Lomonosov (; russian: Михаил (Михайло) Васильевич Ломоносов, p=mʲɪxɐˈil vɐˈsʲilʲjɪvʲɪtɕ , a=Ru-Mikhail Vasilyevich Lomonosov.ogg; – ) was a Russian polymath, scientist and wr ...
,
Ole Borch Ole Borch (7 April 1626 – 13 October 1690) (latinized to ''Olaus Borrichius'' or ''Olaus Borrichus'') was a Danish scientist, physician, grammarian, and poet. He was royal physician to both Kings Frederick III of Denmark and Christian V of Den ...
, and Pierre Bayden all successfully created oxygen, but did not realize it at the time. Oxygen was discovered by
Joseph Priestley Joseph Priestley (; 24 March 1733 – 6 February 1804) was an English chemist, natural philosopher, separatist theologian, grammarian, multi-subject educator, and liberal political theorist. He published over 150 works, and conducted ...
in 1774 when he focused sunlight on a sample of mercuric oxide and collected the resulting gas.
Carl Wilhelm Scheele Carl Wilhelm Scheele (, ; 9 December 1742 – 21 May 1786) was a Swedish German pharmaceutical chemist. Scheele discovered oxygen (although Joseph Priestley published his findings first), and identified molybdenum, tungsten, barium, hydr ...
had also created oxygen in 1771 by the same method, but Scheele did not publish his results until 1777. Tellurium was first discovered in 1783 by Franz Joseph Müller von Reichenstein. He discovered tellurium in a sample of what is now known as calaverite. Müller assumed at first that the sample was pure antimony, but tests he ran on the sample did not agree with this. Muller then guessed that the sample was bismuth sulfide, but tests confirmed that the sample was not that. For some years, Muller pondered the problem. Eventually he realized that the sample was gold bonded with an unknown element. In 1796, Müller sent part of the sample to the German chemist Martin Klaproth, who purified the undiscovered element. Klaproth decided to call the element tellurium after the Latin word for earth. Selenium was discovered in 1817 by
Jöns Jacob Berzelius Baron Jöns Jacob Berzelius (; by himself and his contemporaries named only Jacob Berzelius, 20 August 1779 – 7 August 1848) was a Swedish chemist. Berzelius is considered, along with Robert Boyle, John Dalton, and Antoine Lavoisier, to be o ...
. Berzelius noticed a reddish-brown sediment at a sulfuric acid manufacturing plant. The sample was thought to contain arsenic. Berzelius initially thought that the sediment contained tellurium, but came to realize that it also contained a new element, which he named selenium after the Greek moon goddess Selene.


Periodic table placing

Three of the chalcogens (sulfur, selenium, and tellurium) were part of the discovery of
periodicity Periodicity or periodic may refer to: Mathematics * Bott periodicity theorem, addresses Bott periodicity: a modulo-8 recurrence relation in the homotopy groups of classical groups * Periodic function, a function whose output contains values tha ...
, as they are among a series of triads of elements in the same group that were noted by Johann Wolfgang Döbereiner as having similar properties. Around 1865 John Newlands produced a series of papers where he listed the elements in order of increasing atomic weight and similar physical and chemical properties that recurred at intervals of eight; he likened such periodicity to the
octave In music, an octave ( la, octavus: eighth) or perfect octave (sometimes called the diapason) is the interval between one musical pitch and another with double its frequency. The octave relationship is a natural phenomenon that has been refer ...
s of music. His version included a "group b" consisting of oxygen, sulfur, selenium, tellurium, and
osmium Osmium (from Greek grc, ὀσμή, osme, smell, label=none) is a chemical element with the symbol Os and atomic number 76. It is a hard, brittle, bluish-white transition metal in the platinum group that is found as a trace element in alloys, ...
. After 1869,
Dmitri Mendeleev Dmitri Ivanovich Mendeleev (sometimes transliterated as Mendeleyev or Mendeleef) ( ; russian: links=no, Дмитрий Иванович Менделеев, tr. , ; 8 February Old_Style_and_New_Style_dates">O.S._27_January.html" ;"title="O ...
proposed his periodic table placing oxygen at the top of "group VI" above sulfur, selenium, and tellurium.
Chromium Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal. Chromium metal is valued for its high corrosion resistance and hard ...
,
molybdenum Molybdenum is a chemical element with the symbol Mo and atomic number 42 which is located in period 5 and group 6. The name is from Neo-Latin ''molybdaenum'', which is based on Ancient Greek ', meaning lead, since its ores were confused with lead ...
,
tungsten Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isol ...
, and
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
were sometimes included in this group, but they would be later rearranged as part of group VIB; uranium would later be moved to the
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
series. Oxygen, along with sulfur, selenium, tellurium, and later polonium would be grouped in ''group VIA'', until the group's name was changed to ''group 16'' in 1988.


Modern discoveries

In the late 19th century,
Marie Curie Marie Salomea Skłodowska–Curie ( , , ; born Maria Salomea Skłodowska, ; 7 November 1867 – 4 July 1934) was a Polish and naturalized-French physicist and chemist who conducted pioneering research on radioactivity. She was the fir ...
and
Pierre Curie Pierre Curie ( , ; 15 May 1859 – 19 April 1906) was a French physicist, a pioneer in crystallography, magnetism, piezoelectricity, and radioactivity. In 1903, he received the Nobel Prize in Physics with his wife, Marie Curie, and Henri Becq ...
discovered that a sample of pitchblende was emitting four times as much radioactivity as could be explained by the presence of uranium alone. The Curies gathered several tons of pitchblende and refined it for several months until they had a pure sample of polonium. The discovery officially took place in 1898. Prior to the invention of particle accelerators, the only way to create polonium was to extract it over several months from uranium ore. The first attempt at creating livermorium was from 1976 to 1977 at the LBNL, who bombarded curium-248 with calcium-48, but were not successful. After several failed attempts in 1977, 1998, and 1999 by research groups in Russia, Germany, and the US, livermorium was created successfully in 2000 at the
Joint Institute for Nuclear Research The Joint Institute for Nuclear Research (JINR, russian: Объединённый институт ядерных исследований, ОИЯИ), in Dubna, Moscow Oblast (110 km north of Moscow), Russia, is an international research c ...
by bombarding
curium Curium is a transuranic, radioactive chemical element with the symbol Cm and atomic number 96. This actinide element was named after eminent scientists Marie and Pierre Curie, both known for their research on radioactivity. Curium was first in ...
-248 atoms with calcium-48 atoms. The element was known as ununhexium until it was officially named livermorium in 2012.


Names and etymology

In the 19th century, Jons Jacob Berzelius suggested calling the elements in group 16 "amphigens", as the elements in the group formed amphid salts (salts of
oxyacid An oxyacid, oxoacid, or ternary acid is an acid that contains oxygen. Specifically, it is a compound that contains hydrogen, oxygen, and at least one other element, with at least one hydrogen atom bonded to oxygen that can dissociate to produc ...
s. Formerly regarded as composed of two oxides, an acid and a basic oxide) The term received some use in the early 1800s but is now obsolete. The name ''chalcogen'' comes from the Greek words ''χαλκος'' (, literally "
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pink ...
"), and ''γενές'' (, born, gender, kindle). It was first used in 1932 by Wilhelm Biltz's group at
Leibniz University Hannover Gottfried Wilhelm Leibniz University Hannover (german: Gottfried Wilhelm Leibniz Universität), also known as the University of Hannover, is a public research university located in Hanover, Germany. Founded on 2 May 1831 as Higher Vocational Sc ...
, where it was proposed by Werner Fischer. The word "chalcogen" gained popularity in Germany during the 1930s because the term was analogous to "halogen". Although the literal meanings of the modern Greek words imply that ''chalcogen'' means "copper-former", this is misleading because the chalcogens have nothing to do with copper in particular. "Ore-former" has been suggested as a better translation, as the vast majority of metal ores are chalcogenides and the word ''χαλκος'' in ancient Greek was associated with metals and metal-bearing rock in general; copper, and its alloy
bronze Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals, such as phosphorus, or metalloids suc ...
, was one of the first metals to be used by humans. Oxygen's name comes from the Greek words ''oxy genes'', meaning "acid-forming". Sulfur's name comes from either the Latin word ''sulfurium'' or the
Sanskrit Sanskrit (; attributively , ; nominally , , ) is a classical language belonging to the Indo-Aryan languages, Indo-Aryan branch of the Indo-European languages. It arose in South Asia after its predecessor languages had Trans-cultural diffusion ...
word ''sulvere''; both of those terms are ancient words for sulfur. Selenium is named after the Greek goddess of the moon,
Selene In ancient Greek mythology and religion, Selene (; grc-gre, Σελήνη , meaning "Moon"''A Greek–English Lexicon's.v. σελήνη) is the goddess and the personification of the Moon. Also known as Mene, she is traditionally the daughter of ...
, to match the previously-discovered element tellurium, whose name comes from the Latin word ''telus'', meaning earth. Polonium is named after Marie Curie's country of birth, Poland. Livermorium is named for the
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a federal research facility in Livermore, California, United States. The lab was originally established as the University of California Radiation Laboratory, Livermore Branch in 1952 in response ...
.


Occurrence

The four lightest chalcogens (oxygen, sulfur, selenium, and tellurium) are all primordial elements on Earth. Sulfur and oxygen occur as constituent copper ores and selenium and tellurium occur in small traces in such ores. Polonium forms naturally from the decay of other elements, even though it is not primordial. Livermorium does not occur naturally at all. Oxygen makes up 21% of the atmosphere by weight, 89% of water by weight, 46% of the earth's crust by weight, and 65% of the human body. Oxygen also occurs in many minerals, being found in all oxide minerals and hydroxide minerals, and in numerous other mineral groups. Stars of at least eight times the mass of the sun also produce oxygen in their cores via
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manife ...
. Oxygen is the third-most abundant element in the universe, making up 1% of the universe by weight. Sulfur makes up 0.035% of the earth's crust by weight, making it the 17th most abundant element there and makes up 0.25% of the human body. It is a major component of soil. Sulfur makes up 870 parts per million of seawater and about 1 part per billion of the atmosphere. Sulfur can be found in elemental form or in the form of
sulfide minerals The sulfide minerals are a class of minerals containing sulfide (S2−) or disulfide (S22−) as the major anion. Some sulfide minerals are economically important as metal ores. The sulfide class also includes the selenides, the tellurides, ...
, sulfate minerals, or sulfosalt minerals. Stars of at least 12 times the mass of the sun produce sulfur in their cores via nuclear fusion. Sulfur is the tenth most abundant element in the universe, making up 500 parts per million of the universe by weight. Selenium makes up 0.05
parts per million In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, th ...
of the earth's crust by weight. This makes it the 67th most abundant element in the earth's crust. Selenium makes up on average 5 parts per million of the soils.
Seawater Seawater, or salt water, is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of about 3.5% (35 g/L, 35 ppt, 600 mM). This means that every kilogram (roughly one liter by volume) of seawater has appro ...
contains around 200 parts per trillion of selenium. The atmosphere contains 1
nanogram To help compare different orders of magnitude, the following lists describe various mass levels between 10−59  kg and 1052 kg. The least massive thing listed here is a graviton, and the most massive thing is the observable universe ...
of selenium per cubic meter. There are mineral groups known as selenates and
selenites Selenite may refer to: Substances containing selenium *A selenium-containing anion or ionic compound with the SeO32− anion: **Selenite (ion), anion is a selenium oxoanion with the chemical formula SeO32− ***Selenous acid, the conjugate acid, w ...
, but there are not many minerals in these groups. Selenium is not produced directly by nuclear fusion. Selenium makes up 30 parts per billion of the universe by weight. There are only 5 parts per billion of tellurium in the earth's crust and 15 parts per billion of tellurium in seawater. Tellurium is one of the eight or nine least abundant elements in the earth's crust. There are a few dozen tellurate minerals and telluride minerals, and tellurium occurs in some minerals with gold, such as
sylvanite Sylvanite or silver gold telluride, chemical formula , is the most common telluride of gold. Properties The gold:silver ratio varies from 3:1 to 1:1. It is a metallic mineral with a color that ranges from a steely gray to almost white. It is c ...
and calaverite. Tellurium makes up 9 parts per billion of the universe by weight. Polonium only occurs in trace amounts on earth, via radioactive decay of uranium and thorium. It is present in uranium ores in concentrations of 100 micrograms per metric ton. Very minute amounts of polonium exist in the soil and thus in most food, and thus in the human body. The earth's crust contains less than 1 part per billion of polonium, making it one of the ten rarest metals on earth. Livermorium is always produced artificially in
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
s. Even when it is produced, only a small number of atoms are synthesized at a time.


Chalcophile elements

Chalcophile elements are those that remain on or close to the surface because they combine readily with chalcogens other than oxygen, forming compounds which do not sink into the core. Chalcophile ("chalcogen-loving") elements in this context are those metals and heavier nonmetals that have a low affinity for oxygen and prefer to bond with the heavier chalcogen sulfur as sulfides. Because sulfide minerals are much denser than the silicate minerals formed by lithophile elements, chalcophile elements separated below the lithophiles at the time of the first crystallisation of the Earth's crust. This has led to their depletion in the Earth's crust relative to their solar abundances, though this depletion has not reached the levels found with siderophile elements.


Production

Approximately 100 million
metric tons The tonne ( or ; symbol: t) is a unit of mass equal to 1000  kilograms. It is a non-SI unit accepted for use with SI. It is also referred to as a metric ton to distinguish it from the non-metric units of the short ton ( United State ...
of oxygen are produced yearly. Oxygen is most commonly produced by
fractional distillation Fractional distillation is the separation of a mixture into its component parts, or fractions. Chemical compounds are separated by heating them to a temperature at which one or more fractions of the mixture will vaporize. It uses distillation ...
, in which air is cooled to a liquid, then warmed, allowing all the components of air except for oxygen to turn to gases and escape. Fractionally distilling air several times can produce 99.5% pure oxygen. Another method with which oxygen is produced is to send a stream of dry, clean air through a bed of molecular sieves made of
zeolite Zeolites are microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a metal ion or H+. These p ...
, which absorbs the nitrogen in the air, leaving 90 to 93% pure oxygen. Sulfur can be mined in its elemental form, although this method is no longer as popular as it used to be. In 1865 a large deposit of elemental sulfur was discovered in the U.S. states of Louisiana and Texas, but it was difficult to extract at the time. In the 1890s, Herman Frasch came up with the solution of liquefying the sulfur with superheated steam and pumping the sulfur up to the surface. These days sulfur is instead more often extracted from oil,
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon d ...
, and
tar Tar is a dark brown or black viscous liquid of hydrocarbons and free carbon, obtained from a wide variety of organic materials through destructive distillation. Tar can be produced from coal, wood, petroleum, or peat. "a dark brown or black bi ...
. The world production of selenium is around 1500 metric tons per year, out of which roughly 10% is recycled. Japan is the largest producer, producing 800 metric tons of selenium per year. Other large producers include Belgium (300 metric tons per year), the United States (over 200 metric tons per year), Sweden (130 metric tons per year), and Russia (100 metric tons per year). Selenium can be extracted from the waste from the process of electrolytically refining copper. Another method of producing selenium is to farm selenium-gathering plants such as
milk vetch ''Astragalus'' is a large genus of over 3,000 species of herbs and small shrubs, belonging to the legume family Fabaceae and the subfamily Faboideae. It is the largest genus of plants in terms of described species. The genus is native to ...
. This method could produce three kilograms of selenium per acre, but is not commonly practiced. Tellurium is mostly produced as a by-product of the processing of copper. Tellurium can also be refined by
electrolytic reduction An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy to force a chemical reaction that would not otherwise occur. The external energy source is a voltage applied between the cell′s two electrode ...
of sodium telluride. The world production of tellurium is between 150 and 200 metric tons per year. The United States is one of the largest producers of tellurium, producing around 50 metric tons per year. Peru, Japan, and Canada are also large producers of tellurium. Until the creation of nuclear reactors, all polonium had to be extracted from uranium ore. In modern times, most
isotopes of polonium Polonium (84Po) has 42 isotopes, all of which are radioactivity, radioactive, with between 186 and 227 nucleons. polonium-210, 210Po with a half-life of 138.376 days has the longest half-life of naturally occurring polonium. 209Po, with a half-lif ...
are produced by bombarding
bismuth Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs ...
with neutrons. Polonium can also be produced by high
neutron flux The neutron flux, φ, is a scalar quantity used in nuclear physics and nuclear reactor physics. It is the total length travelled by all free neutrons per unit time and volume. Equivalently, it can be defined as the number of neutrons travellin ...
es in
nuclear reactors A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from ...
. Approximately 100 grams of polonium are produced yearly. All the polonium produced for commercial purposes is made in the Ozersk nuclear reactor in Russia. From there, it is taken to
Samara, Russia Samara ( rus, Сама́ра, p=sɐˈmarə), known from 1935 to 1991 as Kuybyshev (; ), is the largest city and administrative centre of Samara Oblast. The city is located at the confluence of the Volga and the Samara rivers, with a population ...
for purification, and from there to St. Petersburg for distribution. The United States is the largest consumer of polonium. All livermorium is produced artificially in
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
s. The first successful production of livermorium was achieved by bombarding curium-248 atoms with calcium-48 atoms. As of 2011, roughly 25 atoms of livermorium had been synthesized.


Applications

Metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run ...
is the most important source and use of oxygen. Minor industrial uses include Steelmaking (55% of all purified oxygen produced), the
chemical industry The chemical industry comprises the companies that produce industrial chemicals. Central to the modern world economy, it converts raw materials ( oil, natural gas, air, water, metals, and minerals) into more than 70,000 different products. ...
(25% of all purified oxygen), medical use,
water treatment Water treatment is any process that improves the quality of water to make it appropriate for a specific end-use. The end use may be drinking, industrial water supply, irrigation, river flow maintenance, water recreation or many other uses, inc ...
(as oxygen kills some types of bacteria), rocket fuel (in liquid form), and metal cutting. Most sulfur produced is transformed into
sulfur dioxide Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a toxic gas responsible for the odor of burnt matches. It is released naturally by volcanic a ...
, which is further transformed into
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular fo ...
, a very common industrial chemical. Other common uses include being a key ingredient of
gunpowder Gunpowder, also commonly known as black powder to distinguish it from modern smokeless powder, is the earliest known chemical explosive. It consists of a mixture of sulfur, carbon (in the form of charcoal) and potassium nitrate (saltpeter). T ...
and
Greek fire Greek fire was an incendiary weapon used by the Eastern Roman Empire beginning . Used to set fire to enemy ships, it consisted of a combustible compound emitted by a flame-throwing weapon. Some historians believe it could be ignited on contact w ...
, and being used to change
soil pH Soil pH is a measure of the acidity or basicity (alkalinity) of a soil. Soil pH is a key characteristic that can be used to make informative analysis both qualitative and quantitatively regarding soil characteristics. pH is defined as the ne ...
. Sulfur is also mixed into rubber to vulcanize it. Sulfur is used in some types of
concrete Concrete is a composite material composed of fine and coarse aggregate bonded together with a fluid cement (cement paste) that hardens (cures) over time. Concrete is the second-most-used substance in the world after water, and is the most wid ...
and
fireworks Fireworks are a class of low explosive pyrotechnic devices used for aesthetic and entertainment purposes. They are most commonly used in fireworks displays (also called a fireworks show or pyrotechnics), combining a large number of devices ...
. 60% of all sulfuric acid produced is used to generate phosphoric acid. Sulfur is used as a
pesticide Pesticides are substances that are meant to control pests. This includes herbicide, insecticide, nematicide, molluscicide, piscicide, avicide, rodenticide, bactericide, insect repellent, animal repellent, microbicide, fungicide, and ...
(specifically as an acaricide and
fungicide Fungicides are biocidal chemical compounds or biological organisms used to kill parasitic fungi or their spores. A fungistatic inhibits their growth. Fungi can cause serious damage in agriculture, resulting in critical losses of yield, quality ...
) on "orchard, ornamental, vegetable, grain, and other crops." Around 40% of all selenium produced goes to
glassmaking Glass production involves two main methods – the float glass process that produces sheet glass, and glassblowing that produces bottles and other containers. It has been done in a variety of ways during the history of glass. Glass contain ...
. 30% of all selenium produced goes to
metallurgy Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the sc ...
, including manganese production. 15% of all selenium produced goes to
agriculture Agriculture or farming is the practice of cultivating plants and livestock. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people ...
. Electronics such as photovoltaic materials claim 10% of all selenium produced.
Pigment A pigment is a colored material that is completely or nearly insoluble in water. In contrast, dyes are typically soluble, at least at some stage in their use. Generally dyes are often organic compounds whereas pigments are often inorganic compou ...
s account for 5% of all selenium produced. Historically, machines such as
photocopier A photocopier (also called copier or copy machine, and formerly Xerox machine, the generic trademark) is a machine that makes copies of documents and other visual images onto paper or plastic film quickly and cheaply. Most modern photocopier ...
s and
light meter A light meter is a device used to measure the amount of light. In photography, a light meter (more correctly an exposure meter) is used to determine the proper exposure (photography), exposure for a photograph. The meter will include either a Di ...
s used one-third of all selenium produced, but this application is in steady decline.
Tellurium suboxide The diatomic molecule tellurium monoxide has been found as a transient species. Previous work that claimed the existence of TeO solid has not been substantiated. The coating on DVDs called tellurium suboxide may be a mixture of tellurium dioxide a ...
, a mixture of tellurium and tellurium dioxide, is used in the rewritable data layer of some CD-RW disks and DVD-RW disks. Bismuth telluride is also used in many microelectronic devices, such as photoreceptors. Tellurium is sometimes used as an alternative to sulfur in
vulcanized rubber Vulcanization (British: Vulcanisation) is a range of processes for hardening rubbers. The term originally referred exclusively to the treatment of natural rubber with sulfur, which remains the most common practice. It has also grown to inclu ...
. Cadmium telluride is used as a high-efficiency material in solar panels. Some of polonium's applications relate to the element's radioactivity. For instance, polonium is used as an alpha-particle generator for research. Polonium alloyed with
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to for ...
provides an efficient neutron source. Polonium is also used in nuclear batteries. Most polonium is used in antistatic devices. Livermorium does not have any uses whatsoever due to its extreme rarity and short half-life. Organochalcogen compounds are involved in the
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
process. These compounds also feature into
ligand In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elect ...
chemistry and
biochemistry Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology and ...
. One application of chalcogens themselves is to manipulate
redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or ...
couples in supramolar chemistry (chemistry involving non-covalent bond interactions). This application leads on to such applications as crystal packing, assembly of large molecules, and biological recognition of patterns. The secondary bonding interactions of the larger chalcogens, selenium and tellurium, can create organic solvent-holding
acetylene Acetylene ( systematic name: ethyne) is the chemical compound with the formula and structure . It is a hydrocarbon and the simplest alkyne. This colorless gas is widely used as a fuel and a chemical building block. It is unstable in its pure ...
nanotubes. Chalcogen interactions are useful for conformational analysis and stereoelectronic effects, among other things. Chalcogenides with through bonds also have applications. For instance, divalent sulfur can stabilize carbanions,
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
ic centers, and
radical Radical may refer to: Politics and ideology Politics * Radical politics, the political intent of fundamental societal change *Radicalism (historical), the Radical Movement that began in late 18th century Britain and spread to continental Europe an ...
. Chalcogens can confer upon ligands (such as DCTO) properties such as being able to transform Cu(II) to Cu(I). Studying chalcogen interactions gives access to radical cations, which are used in mainstream synthetic chemistry. Metallic redox centers of biological importance are tunable by interactions of ligands containing chalcogens, such as
methionine Methionine (symbol Met or M) () is an essential amino acid in humans. As the precursor of other amino acids such as cysteine and taurine, versatile compounds such as SAM-e, and the important antioxidant glutathione, methionine plays a critical ...
and
selenocysteine Selenocysteine (symbol Sec or U, in older publications also as Se-Cys) is the 21st proteinogenic amino acid. Selenoproteins contain selenocysteine residues. Selenocysteine is an analogue of the more common cysteine with selenium in place of the ...
. Also, chalcogen through-bonds can provide insight about the process of electron transfer.


Biological role

Oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
is needed by almost all
organisms In biology, an organism () is any living system that functions as an individual entity. All organisms are composed of cells ( cell theory). Organisms are classified by taxonomy into groups such as multicellular animals, plants, and fu ...
for the purpose of generating ATP. It is also a key component of most other biological compounds, such as water,
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ...
s and DNA. Human blood contains a large amount of oxygen. Human bones contain 28% oxygen. Human tissue contains 16% oxygen. A typical 70-kilogram human contains 43 kilograms of oxygen, mostly in the form of water. All animals need significant amounts of
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formul ...
. Some amino acids, such as
cysteine Cysteine (symbol Cys or C; ) is a semiessential proteinogenic amino acid with the formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. When present as a deprotonated catalytic residue, some ...
and
methionine Methionine (symbol Met or M) () is an essential amino acid in humans. As the precursor of other amino acids such as cysteine and taurine, versatile compounds such as SAM-e, and the important antioxidant glutathione, methionine plays a critical ...
contain sulfur. Plant roots take up sulfate ions from the soil and reduce it to sulfide ions. Metalloproteins also use sulfur to attach to useful metal atoms in the body and sulfur similarly attaches itself to poisonous metal atoms like
cadmium Cadmium is a chemical element with the Symbol (chemistry), symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12 element, group 12, zinc and mercury (element), mercury. Li ...
to haul them to the safety of the liver. On average, humans consume 900 milligrams of sulfur each day. Sulfur compounds, such as those found in skunk spray often have strong odors. All animals and some plants need trace amounts of
selenium Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal (more rarely considered a metalloid) with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, ...
, but only for some specialized enzymes. Humans consume on average between 6 and 200 micrograms of selenium per day. Mushrooms and
brazil nut The Brazil nut (''Bertholletia excelsa'') is a South American tree in the family Lecythidaceae, and it is also the name of the tree's commercially harvested edible seeds. It is one of the largest and longest-lived trees in the Amazon rainforest ...
s are especially noted for their high selenium content. Selenium in foods is most commonly found in the form of amino acids such as
selenocysteine Selenocysteine (symbol Sec or U, in older publications also as Se-Cys) is the 21st proteinogenic amino acid. Selenoproteins contain selenocysteine residues. Selenocysteine is an analogue of the more common cysteine with selenium in place of the ...
and selenomethionine. Selenium can protect against heavy metal poisoning. Tellurium is not known to be needed for animal life, although a few fungi can incorporate it in compounds in place of selenium. Microorganisms also absorb tellurium and emit dimethyl telluride. Most tellurium in the blood stream is excreted slowly in urine, but some is converted to dimethyl telluride and released through the lungs. On average, humans ingest about 600 micrograms of tellurium daily. Plants can take up some tellurium from the soil. Onions and garlic have been found to contain as much as 300
parts per million In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, th ...
of tellurium in dry weight. Polonium has no biological role, and is highly toxic on account of being radioactive.


Toxicity

Oxygen is generally nontoxic, but
oxygen toxicity Oxygen toxicity is a condition resulting from the harmful effects of breathing molecular oxygen () at increased partial pressures. Severe cases can result in cell damage and death, with effects most often seen in the central nervous system, l ...
has been reported when it is used in high concentrations. In both elemental gaseous form and as a component of water, it is vital to almost all life on earth. Despite this, liquid oxygen is highly dangerous. Even gaseous oxygen is dangerous in excess. For instance, sports divers have occasionally drowned from
convulsion A convulsion is a medical condition where the body muscles contract and relax rapidly and repeatedly, resulting in uncontrolled shaking. Because epileptic seizures typically include convulsions, the term ''convulsion'' is sometimes used as a ...
s caused by breathing pure oxygen at a depth of more than underwater. Oxygen is also toxic to some
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
. Ozone, an allotrope of oxygen, is toxic to most life. It can cause
lesion A lesion is any damage or abnormal change in the tissue of an organism, usually caused by disease or trauma. ''Lesion'' is derived from the Latin "injury". Lesions may occur in plants as well as animals. Types There is no designated classif ...
s in the respiratory tract. Sulfur is generally nontoxic and is even a vital nutrient for humans. However, in its elemental form it can cause redness in the eyes and skin, a burning sensation and a cough if inhaled, a burning sensation and diarrhoea and/or
catharsis Catharsis (from Greek , , meaning "purification" or "cleansing" or "clarification") is the purification and purgation of emotions through dramatic art, or it may be any extreme emotional state that results in renewal and restoration. In its lite ...
if ingested, and can irritate the mucous membranes. An excess of sulfur can be toxic for cows because microbes in the
rumen The rumen, also known as a paunch, is the largest stomach compartment in ruminants and the larger part of the reticulorumen, which is the first chamber in the alimentary canal of ruminant animals. The rumen's microbial favoring environment al ...
s of cows produce toxic hydrogen sulfide upon reaction with sulfur. Many sulfur compounds, such as
hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is poisonous, corrosive, and flammable, with trace amounts in ambient atmosphere having a characteristic foul odor of rotten eggs. The under ...
(H2S) and
sulfur dioxide Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a toxic gas responsible for the odor of burnt matches. It is released naturally by volcanic a ...
(SO2) are highly toxic. Selenium is a trace nutrient required by humans on the order of tens or hundreds of micrograms per day. A dose of over 450 micrograms can be toxic, resulting in bad breath and
body odor Body odor or body odour (BO) is present in all animals and its intensity can be influenced by many factors (behavioral patterns, survival strategies). Body odor has a strong genetic basis, but can also be strongly influenced by various diseases ...
. Extended, low-level exposure, which can occur at some industries, results in
weight loss Weight loss, in the context of medicine, health, or physical fitness, refers to a reduction of the total body mass, by a mean loss of fluid, body fat ( adipose tissue), or lean mass (namely bone mineral deposits, muscle, tendon, and other co ...
,
anemia Anemia or anaemia (British English) is a blood disorder in which the blood has a reduced ability to carry oxygen due to a lower than normal number of red blood cells, or a reduction in the amount of hemoglobin. When anemia comes on slowly, t ...
, and
dermatitis Dermatitis is inflammation of the skin, typically characterized by itchiness, redness and a rash. In cases of short duration, there may be small blisters, while in long-term cases the skin may become thickened. The area of skin involved c ...
. In many cases of selenium poisoning, selenous acid is formed in the body.
Hydrogen selenide Hydrogen selenide is an inorganic compound with the formula H2Se. This hydrogen chalcogenide is the simplest and most commonly encountered hydride of selenium. H2Se is a colorless, flammable gas under standard conditions. It is the most toxic sel ...
(H2Se) is highly toxic. Exposure to tellurium can produce unpleasant side effects. As little as 10 micrograms of tellurium per cubic meter of air can cause notoriously unpleasant breath, described as smelling like rotten garlic. Acute tellurium poisoning can cause vomiting, gut inflammation, internal bleeding, and respiratory failure. Extended, low-level exposure to tellurium causes tiredness and indigestion.
Sodium tellurite Sodium tellurite is an inorganic tellurium compound with formula Na2TeO3. It is a water-soluble white solid and a weak reducing agent. Sodium tellurite is an intermediate in the extraction of the element, tellurium; it is a product obtained from a ...
(Na2TeO3) is lethal in amounts of around 2 grams. Polonium is dangerous as an
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be prod ...
emitter. If ingested,
polonium-210 Polonium-210 (210Po, Po-210, historically radium F) is an isotope of polonium. It undergoes alpha decay to stable 206Pb with a half-life of 138.376 days (about months), the longest half-life of all naturally occurring polonium isotopes. First ...
is a million times as toxic as
hydrogen cyanide Hydrogen cyanide, sometimes called prussic acid, is a chemical compound with the formula HCN and structure . It is a colorless, extremely poisonous, and flammable liquid that boils slightly above room temperature, at . HCN is produced on a ...
by weight; it has been used as a murder weapon in the past, most famously to kill
Alexander Litvinenko Alexander Valterovich "Sasha" Litvinenko (30 August 1962 ( at WebCite) or 4 December 1962 – 23 November 2006) was a British-naturalised Russian defector and former officer of the Russian Federal Security Service (FSB) who specialised i ...
. Polonium poisoning can cause
nausea Nausea is a diffuse sensation of unease and discomfort, sometimes perceived as an urge to vomit. While not painful, it can be a debilitating symptom if prolonged and has been described as placing discomfort on the chest, abdomen, or back of th ...
,
vomiting Vomiting (also known as emesis and throwing up) is the involuntary, forceful expulsion of the contents of one's stomach through the mouth and sometimes the nose. Vomiting can be the result of ailments like food poisoning, gastroenter ...
, anorexia, and
lymphopenia Lymphocytopenia is the condition of having an abnormally low level of lymphocytes in the blood. Lymphocytes are a white blood cell with important functions in the immune system. It is also called lymphopenia. The opposite is lymphocytosis, which ...
. It can also damage
hair follicle The hair follicle is an organ found in mammalian skin. It resides in the dermal layer of the skin and is made up of 20 different cell types, each with distinct functions. The hair follicle regulates hair growth via a complex interaction between ...
s and
white blood cell White blood cells, also called leukocytes or leucocytes, are the cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. All white blood cells are produced and derived from mult ...
s. Polonium-210 is only dangerous if ingested or inhaled because its alpha particle emissions cannot penetrate human skin. Polonium-209 is also toxic, and can cause
leukemia Leukemia ( also spelled leukaemia and pronounced ) is a group of blood cancers that usually begin in the bone marrow and result in high numbers of abnormal blood cells. These blood cells are not fully developed and are called ''blasts'' or ...
.


Amphid salts

''Amphid salts'' was a name given by Jons Jacob Berzelius in the 19th century for chemical salts derived from the 16th group of the periodic table which included
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
,
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formul ...
,
selenium Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal (more rarely considered a metalloid) with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, ...
, and
tellurium Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionall ...
. The term received some use in the early 1800s but is now obsolete. The current term in use for the 16th group is chalcogens.


See also

* Chalcogenide * Gold chalcogenides *
Halogen The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this grou ...
* Interchalcogen * Pnictogen


References


External links

* {{Authority control Periodic table Groups (periodic table)