HOME

TheInfoList



OR:

Cell adhesion is the process by which cells interact and attach to neighbouring cells through specialised molecules of the cell surface. This process can occur either through direct contact between cell surfaces such as
cell junctions Cell junctions (or intercellular bridges) are a class of cellular structures consisting of multiprotein complexes that provide contact or adhesion between neighboring cells or between a cell and the extracellular matrix in animals. They also maint ...
or indirect interaction, where cells attach to surrounding
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix, is a three-dimensional network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide s ...
, a gel-like structure containing molecules released by cells into spaces between them. Cells adhesion occurs from the interactions between cell-adhesion molecules (CAMs), transmembrane proteins located on the cell surface. Cell adhesion links cells in different ways and can be involved in
signal transduction Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellula ...
for cells to detect and respond to changes in the surroundings. Other cellular processes regulated by cell adhesion include
cell migration Cell migration is a central process in the development and maintenance of multicellular organisms. Tissue formation during embryonic development, wound healing and immune responses all require the orchestrated movement of cells in particular dir ...
and tissue development in
multicellular organisms A multicellular organism is an organism that consists of more than one cell, in contrast to unicellular organism. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially uni ...
. Alterations in cell adhesion can disrupt important cellular processes and lead to a variety of diseases, including cancer and
arthritis Arthritis is a term often used to mean any disorder that affects joints. Symptoms generally include joint pain and stiffness. Other symptoms may include redness, warmth, swelling, and decreased range of motion of the affected joints. In som ...
. Cell adhesion is also essential for infectious organisms, such as
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
or
viruses A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsky's ...
, to cause
diseases A disease is a particular abnormal condition that negatively affects the structure or function of all or part of an organism, and that is not immediately due to any external injury. Diseases are often known to be medical conditions that a ...
.


General mechanism

CAMs are classified into four major families: integrins, immunoglobulin (Ig) superfamily, cadherins, and selectins. Cadherins and IgSF are homophilic CAMs, as they directly bind to the same type of CAMs on another cell, while integrins and selectins are heterophilic CAMs that bind to different types of CAMs. Each of these adhesion molecules has a different function and recognizes different
ligands In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electr ...
. Defects in cell adhesion are usually attributable to defects in expression of CAMs. In multicellular organisms, bindings between CAMs allow cells to adhere to one another and creates structures called
cell junctions Cell junctions (or intercellular bridges) are a class of cellular structures consisting of multiprotein complexes that provide contact or adhesion between neighboring cells or between a cell and the extracellular matrix in animals. They also maint ...
. According to their functions, the cell junctions can be classified as: *Anchoring junctions ( adherens junctions, desmosomes and
hemidesmosomes Hemidesmosomes are very small stud-like structures found in keratinocytes of the epidermis of skin that attach to the extracellular matrix. They are similar in form to desmosomes when visualized by electron microscopy, however, desmosomes attach t ...
), which maintain cells together and strengthens contact between cells. *Occluding junctions ( tight junctions), which seal gaps between cells through cell–cell contact, making an impermeable barrier for diffusion *Channel-forming junctions (
gap junctions Gap junctions are specialized intercellular connections between a multitude of animal cell-types. They directly connect the cytoplasm of two cells, which allows various molecules, ions and electrical impulses to directly pass through a regula ...
), which links cytoplasm of adjacent cells allowing transport of molecules to occur between cells *Signal-relaying junctions, which can be synapses in the nervous system Alternatively, cell junctions can be categorised into two main types according to what interacts with the cell: cell–cell junctions, mainly mediated by cadherins, and cell–matrix junctions, mainly mediated by integrins.


Cell–cell junctions

Cell–cell junctions can occur in different forms. In anchoring junctions between cells such as adherens junctions and desmosomes, the main CAMs present are the cadherins. This family of CAMs are membrane proteins that mediate cell–cell adhesion through its extracellular domains and require extracellular Ca2+ ions to function correctly. Cadherins forms homophilic attachment between themselves, which results in cells of a similar type sticking together and can lead to selective cell adhesion, allowing vertebrate cells to assemble into organised tissues. Cadherins are essential for cell–cell adhesion and cell signalling in multicellular animals and can be separated into two types: classical cadherins and non-classical cadherins.


Adherens junctions

Adherens junctions mainly function to maintain the shape of tissues and to hold cells together. In adherens junctions, cadherins between neighbouring cells interact through their extracellular domains, which share a conserved calcium-sensitive region in their extracellular domains. When this region comes into contact with Ca2+ ions, extracellular domains of cadherins undergo a
conformational change In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors. A macromolecule is usually flexible and dynamic. Its shape can change in response to changes in its environment or oth ...
from the inactive flexible conformation to a more rigid conformation in order to undergo homophilic binding. Intracellular domains of cadherins are also highly conserved, as they bind to proteins called
catenins Catenins are a family of proteins found in complexes with cadherin cell adhesion molecules of animal cells. The first two catenins that were identified became known as α-catenin and β-catenin. α-Catenin can bind to β-catenin and can also bin ...
, forming catenin-cadherin complexes. These
protein complexes A protein complex or multiprotein complex is a group of two or more associated polypeptide chains. Protein complexes are distinct from multienzyme complexes, in which multiple catalytic domains are found in a single polypeptide chain. Protein ...
link cadherins to
actin filaments Microfilaments, also called actin filaments, are protein filaments in the cytoplasm of eukaryotic cells that form part of the cytoskeleton. They are primarily composed of polymers of actin, but are modified by and interact with numerous other p ...
. This association with actin filaments is essential for adherens junctions to stabilise cell–cell adhesion. Interactions with actin filaments can also promote clustering of cadherins, which are involved in the assembly of adherens junctions. This is since cadherin clusters promote
actin filament Microfilaments, also called actin filaments, are protein filaments in the cytoplasm of eukaryotic cells that form part of the cytoskeleton. They are primarily composed of polymers of actin, but are modified by and interact with numerous other pro ...
polymerisation ,which in turn promotes the assembly of adherens junctions by binding to the cadherin–catenin complexes that then form at the junction.


Desmosomes

Desmosomes are structurally similar to adherens junctions but composed of different components. Instead of classical cadherins, non-classical cadherins such as desmogleins and desmocollins act as adhesion molecules and they are linked to intermediate filaments instead of actin filaments. No catenin is present in desmosomes as intracellular domains of desmosomal cadherins interact with desmosomal plaque proteins, which form the thick cytoplasmic plaques in desmosomes and link cadherins to intermediate filaments. Desmosomes provides strength and resistance to mechanical stress by unloading forces onto the flexible but resilient intermediate filaments, something that cannot occur with the rigid actin filaments. This makes desmosomes important in tissues that encounter high levels of mechanical stress, such as heart muscle and epithelia, and explains why it appears frequently in these types of tissues.


Tight junctions

Tight junctions are normally present in
epithelial Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercellu ...
and
endothelial The endothelium is a single layer of squamous endothelial cells that line the interior surface of blood vessels and lymphatic vessels. The endothelium forms an interface between circulating blood or lymph in the lumen and the rest of the ve ...
tissues, where they seal gaps and regulate
paracellular transport Paracellular transport refers to the transfer of substances across an epithelium by passing through the intercellular space ''between'' the cells. It is in contrast to transcellular transport, where the substances travel ''through'' the cell, pass ...
of solutes and extracellular fluids in these tissues that function as barriers. Tight junction is formed by transmembrane proteins, including claudins,
occludin Occludin is an enzyme ( EC 1.6) that oxidizes NADH. It was first identified in epithelial cells as a 65 kDa integral plasma-membrane protein localized at the tight junctions. Together with Claudins, and zonula occludens-1 (ZO-1), occludin has be ...
s and tricellulins, that bind closely to each other on adjacent membranes in a homophilic manner. Similar to anchoring junctions, intracellular domains of these tight junction proteins are bound with
scaffold protein In biology, scaffold proteins are crucial regulators of many key signalling pathways. Although scaffolds are not strictly defined in function, they are known to interact and/or bind with multiple members of a signalling pathway, tethering them i ...
s that keep these proteins in clusters and link them to actin filaments in order to maintain structure of the tight junction. Claudins, essential for formation of tight junctions, form paracellular pores which allow selective passage of specific ions across tight junctions making the barrier selectively permeable.


Gap junctions

Gap junctions are composed of channels called
connexons In biology, a connexon, also known as a connexin hemichannel, is an assembly of six proteins called connexins that form the pore for a gap junction between the cytoplasm of two adjacent cells. This channel allows for bidirectional flow of ions and ...
, which consist of transmembrane proteins called connexins clustered in groups of six. Connexons from adjacent cells form continuous channels when they come into contact and align with each other. These channels allow transport of ions and small molecules between cytoplasm of two adjacent cells, apart from holding cells together and provide structural stability like anchoring junctions or tight junctions. Gap junction channels are selectively permeable to specific ions depending on which connexins form the connexons, which allows gap junctions to be involved in cell signalling by regulating the transfer of molecules involved in signalling cascades. Channels can respond to many different stimuli and are regulated dynamically either by rapid mechanisms, such as voltage gating, or by slow mechanism, such as altering numbers of channels present in gap junctions.


Adhesion mediated by selectins

Selectins are a family of specialised CAMs involved in transient cell–cell adhesion occurring in the circulatory system. They mainly mediate the movement of
white blood cells White blood cells, also called leukocytes or leucocytes, are the cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. All white blood cells are produced and derived from mult ...
(leukocytes) in the bloodstream by allowing the white blood cells to "roll" on endothelial cells through reversible bindings of selections. Selectins undergo heterophilic bindings, as its extracellular domain binds to carbohydrates on adjacent cells instead of other selectins, while it also require Ca2+ ions to function, same as cadherins. cell–cell adhesion of leukocytes to endothelial cells is important for
immune responses An immune response is a reaction which occurs within an organism for the purpose of defending against foreign invaders. These invaders include a wide variety of different microorganisms including viruses, bacteria, parasites, and fungi which could ...
as leukocytes can travel to sites of infection or injury through this mechanism. At these sites, integrins on the rolling white blood cells are activated and bind firmly to the local endothelial cells, allowing the leukocytes to stop migrating and move across the endothelial barrier.


Adhesion mediated by members of the immunoglobulin superfamily

The immunoglobulin superfamily (IgSF) is one of the largest superfamily of proteins in the body and it contains many diverse CAMs involved in different functions. These transmembrane proteins have one or more immunoglobulin-like domains in their extracellular domains and undergo calcium-independent binding with ligands on adjacent cells. Some IgSF CAMs, such as neural cell adhesion molecules (NCAMs), can perform homophilic binding while others, such as intercellular cell adhesion molecules (ICAMs) or vascular cell adhesion molecules (VCAMs) undergo heterophilic binding with molecules like carbohydrates or integrins. Both ICAMs and VCAMs are expressed on vascular endothelial cells and they interact with integrins on the leukocytes to assist leukocyte attachment and its movement across the endothelial barrier.


Cell–matrix junctions

Cells create extracellular matrix by releasing molecules into its surrounding extracellular space. Cells have specific CAMs that will bind to molecules in the extracellular matrix and link the matrix to the intracellular
cytoskeleton The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is co ...
. Extracellular matrix can act as a support when organising cells into tissues and can also be involved in cell signalling by activating intracellular pathways when bound to the CAMs. Cell–matrix junctions are mainly mediated by integrins, which also clusters like cadherins to form firm adhesions. Integrins are transmembrane heterodimers formed by different α and β subunits, both subunits with different domain structures. Integrins can signal in both directions: inside-out signalling, intracellular signals modifying the intracellular domains, can regulate affinity of integrins for their ligands, while outside-in signalling, extracellular ligands binding to extracellular domains, can induce conformational changes in integrins and initiate signalling cascades. Extracellular domains of integrins can bind to different ligands through heterophilic binding while intracellular domains can either be linked to intermediate filaments, forming hemidesmosomes, or to actin filaments, forming focal adhesions.


Hemidesmosomes

In hemidesmosomes, integrins attach to extracellular matrix proteins called laminins in the
basal lamina The basal lamina is a layer of extracellular matrix secreted by the epithelial cells, on which the epithelium sits. It is often incorrectly referred to as the basement membrane, though it does constitute a portion of the basement membrane. The bas ...
, which is the extracellular matrix secreted by epithelial cells. Integrins link extracellular matrix to
keratin Keratin () is one of a family of structural fibrous proteins also known as ''scleroproteins''. Alpha-keratin (α-keratin) is a type of keratin found in vertebrates. It is the key structural material making up Scale (anatomy), scales, hair, Nail ...
intermediate filaments, which interacts with intracellular domain of integrins via adapter proteins such as plectins and BP230. Hemidesmosomes are important in maintaining structural stability of epithelial cells by anchoring them together indirectly through the extracellular matrix.


Focal adhesions

In focal adhesions, integrins attach fibronectins, a component in the extracellular matrix, to actin filaments inside cells. Adapter proteins, such as talins, vinculins, α-actinins and filamins, form a complex at the intracellular domain of integrins and bind to actin filaments. This multi-protein complex linking integrins to actin filaments is important for assembly of signalling complexes that act as signals for cell growth and cell motility.


Other organisms


Eukaryotes

Plants cells adhere closely to each other and are connected through
plasmodesmata Plasmodesmata (singular: plasmodesma) are microscopic channels which traverse the cell walls of plant cells and some algal cells, enabling transport and communication between them. Plasmodesmata evolved independently in several lineages, and spec ...
, channels that cross the plant cell walls and connect cytoplasms of adjacent plant cells. Molecules that are either nutrients or signals required for growth are transported, either passively or selectively, between plant cells through plasmodesmata.
Protozoans Protozoa (singular: protozoan or protozoon; alternative plural: protozoans) are a group of single-celled eukaryotes, either free-living or parasitic, that feed on organic matter such as other microorganisms or organic tissues and debris. Hist ...
express multiple adhesion molecules with different specificities that bind to carbohydrates located on surfaces of their host cells. cell–cell adhesion is key for pathogenic protozoans to attach en enter their host cells. An example of a pathogenic protozoan is the
malaria Malaria is a mosquito-borne infectious disease that affects humans and other animals. Malaria causes symptoms that typically include fever, tiredness, vomiting, and headaches. In severe cases, it can cause jaundice, seizures, coma, or death. ...
l parasite (''
Plasmodium falciparum ''Plasmodium falciparum'' is a unicellular protozoan parasite of humans, and the deadliest species of ''Plasmodium'' that causes malaria in humans. The parasite is transmitted through the bite of a female '' Anopheles'' mosquito and causes the ...
''), which uses one adhesion molecule called the
circumsporozoite protein Circumsporozoite protein (CSP) is a secreted protein of the sporozoite stage of the malaria parasite (''Plasmodium'' sp.) and is the antigenic target of RTS,S and other malaria vaccines. The amino-acid sequence of CSP consists of an immunodomina ...
to bind to liver cells, and another adhesion molecule called the merozoite surface protein to bind
red blood cells Red blood cells (RBCs), also referred to as red cells, red blood corpuscles (in humans or other animals not having nucleus in red blood cells), haematids, erythroid cells or erythrocytes (from Greek ''erythros'' for "red" and ''kytos'' for "hol ...
. Pathogenic
fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately fr ...
use
adhesion molecules Cell adhesion molecules (CAMs) are a subset of cell surface proteins that are involved in the binding of cells with other cells or with the extracellular matrix (ECM), in a process called cell adhesion. In essence, CAMs help cells stick to each ...
present on its cell wall to attach, either through protein-protein or protein-carbohydrate interactions, to host cells or fibronectins in the extracellular matrix.


Prokaryotes

Prokaryote A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Con ...
s have adhesion molecules on their cell surface termed bacterial adhesins, apart from using its
pili Pili may refer to: Common names of plants * '' Canarium ovatum'', a Philippine tree that is a source of the pili nut * ''Heteropogon contortus'', a Hawaiian grass used to thatch structures Places * Pili, Camarines Sur, is a municipality in the ...
( fimbriae) and
flagella A flagellum (; ) is a hairlike appendage that protrudes from certain plant and animal sperm cells, and from a wide range of microorganisms to provide motility. Many protists with flagella are termed as flagellates. A microorganism may have fro ...
for cell adhesion. Adhesins can recognise a variety of ligands present on the host cell surfaces and also components in the extracellular matrix. These molecules also control host specificity and regulate
tropism A tropism is a biological phenomenon, indicating growth or turning movement of a biological organism, usually a plant, in response to an environmental stimulus. In tropisms, this response is dependent on the direction of the stimulus (as oppos ...
(tissue- or cell-specific interactions) through their interaction with their ligands.


Viruses

Virus A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsk ...
es also have adhesion molecules required for viral binding to host cells. For example,
influenza Influenza, commonly known as "the flu", is an infectious disease caused by influenza viruses. Symptoms range from mild to severe and often include fever, runny nose, sore throat, muscle pain, headache, coughing, and fatigue. These symptom ...
virus has a
hemagglutinin In molecular biology, hemagglutinins (or ''haemagglutinin'' in British English) (from the Greek , 'blood' + Latin , 'glue') are receptor-binding membrane fusion glycoproteins produced by viruses in the '' Paramyxoviridae'' family. Hemagglutinins a ...
on its surface that is required for recognition of the
sugar Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose, fructose, and galactose. Compound sugars, also called disaccharides or do ...
sialic acid Sialic acids are a class of alpha-keto acid sugars with a nine-carbon backbone. The term "sialic acid" (from the Greek for saliva, - ''síalon'') was first introduced by Swedish biochemist Gunnar Blix in 1952. The most common member of this ...
on host cell surface molecules. HIV has an adhesion molecule termed gp120 that binds to its ligand
CD4 In molecular biology, CD4 (cluster of differentiation 4) is a glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). CD4 is found on the surface of immune cells such as T helper cells, monocytes, macrophages, and dendritic ce ...
, which is expressed on
lymphocyte A lymphocyte is a type of white blood cell (leukocyte) in the immune system of most vertebrates. Lymphocytes include natural killer cells (which function in cell-mediated, cytotoxic innate immunity), T cells (for cell-mediated, cytotoxic a ...
s. Viruses can also target components of cell junctions to enter host cells, which is what happens when the
hepatitis C virus The hepatitis C virus (HCV) is a small (55–65 nm in size), enveloped, positive-sense single-stranded RNA virus of the family '' Flaviviridae''. The hepatitis C virus is the cause of hepatitis C and some cancers such as liver cancer (hepatoc ...
targets occludins and claudins in tight junctions to enter liver cells.


Clinical implications

Dysfunction of cell adhesion occurs during cancer
metastasis Metastasis is a pathogenic agent's spread from an initial or primary site to a different or secondary site within the host's body; the term is typically used when referring to metastasis by a cancerous tumor. The newly pathological sites, the ...
. Loss of cell–cell adhesion in metastatic tumour cells allows them to escape their site of origin and spread through the circulatory system. One example of CAMs deregulated in cancer are cadherins, which are inactivated either by genetic mutations or by other oncogenic signalling molecules, allowing cancer cells to migrate and be more invasive. Other CAMs, like selectins and integrins, can facilitate metastasis by mediating cell–cell interactions between migrating metastatic tumour cells in the circulatory system with endothelial cells of other distant tissues. Due to the link between CAMs and cancer metastasis, these molecules could be potential therapeutic targets for cancer treatment. There are also other human genetic diseases caused by an inability to express specific adhesion molecules. An example is leukocyte adhesion deficiency-I (LAD-I), where expression of the β2 integrin subunit is reduced or lost. This leads to reduced expression of β2 integrin heterodimers, which are required for leukocytes to firmly attach to the endothelial wall at sites of
inflammation Inflammation (from la, inflammatio) is part of the complex biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or irritants, and is a protective response involving immune cells, blood vessels, and molec ...
in order to fight infections. Leukocytes from LAD-I patients are unable to adhere to endothelial cells and patients exhibit serious episodes of
infection An infection is the invasion of tissues by pathogens, their multiplication, and the reaction of host tissues to the infectious agent and the toxins they produce. An infectious disease, also known as a transmissible disease or communicable di ...
that can be life-threatening. An
autoimmune disease An autoimmune disease is a condition arising from an abnormal immune response to a functioning body part. At least 80 types of autoimmune diseases have been identified, with some evidence suggesting that there may be more than 100 types. Nearly a ...
called
pemphigus Pemphigus ( or ) is a rare group of blistering autoimmune diseases that affect the skin and mucous membranes. The name is derived from the Greek root ''pemphix'', meaning "pustule". In pemphigus, autoantibodies form against desmoglein, whic ...
is also caused by loss of cell adhesion, as it results from
autoantibodies An autoantibody is an antibody (a type of protein) produced by the immune system that is directed against one or more of the individual's own proteins. Many autoimmune diseases (notably lupus erythematosus) are associated with such antibodies. ...
targeting a person's own desmosomal cadherins which leads to epidermal cells detaching from each other and causes skin blistering. Pathogenic microorganisms, including bacteria, viruses and protozoans, have to first adhere to host cells in order to infect and cause diseases. Anti-adhesion therapy can be used to prevent infection by targeting adhesion molecules either on the pathogen or on the host cell. Apart from altering the production of adhesion molecules, competitive inhibitors that bind to adhesion molecules to prevent binding between cells can also be used, acting as anti-adhesive agents.


See also

* Cell communication (biology) *
Epithelium Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercellul ...
*
Cytoskeleton The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is co ...
* Differential adhesion hypothesis * Role of cell adhesions in neural development


References


External links


The Cell
by G. Cooper (online textbook)
Molecular Cell Biology
by Lodish et al. (online textbook)
Molecular Biology of the Cell
by Alberts et al. (online textbook)
Cell Adhesion and Extracellular Matrix - The Virtual Library of Biochemistry, Molecular Biology and Cell Biology
{{Authority control