HOME

TheInfoList



OR:

A blade server is a stripped-down server computer with a
modular design Modular design, or modularity in design, is a design principle that subdivides a system into smaller parts called ''modules'' (such as modular process skids), which can be independently created, modified, replaced, or exchanged with other modules ...
optimized to minimize the use of physical space and energy. Blade servers have many components removed to save space, minimize power consumption and other considerations, while still having all the functional components to be considered a
computer A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations ( computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These prog ...
. Unlike a
rack-mount A 19-inch rack is a standardized frame or enclosure for mounting multiple electronic equipment modules. Each module has a front panel that is wide. The 19 inch dimension includes the edges or "ears" that protrude from each side of the equ ...
server, a blade server fits inside a blade enclosure, which can hold multiple blade servers, providing services such as power, cooling, networking, various interconnects and management. Together, blades and the blade enclosure form a blade system, which may itself be rack-mounted. Different blade providers have differing principles regarding what to include in the blade itself, and in the blade system as a whole. In a ''standard'' server-rack configuration, one rack unit or 1U— wide and tall—defines the minimum possible size of any equipment. The principal benefit and justification of blade computing relates to lifting this restriction so as to reduce size requirements. The most common computer rack form-factor is 42U high, which limits the number of discrete computer devices directly mountable in a rack to 42 components. Blades do not have this limitation. , densities of up to 180 servers per blade system (or 1440 servers per rack) are achievable with blade systems.


Blade enclosure

Enclosure (or chassis) performs many of the non-core computing services found in most computers. Non-blade systems typically use bulky, hot and space-inefficient components, and may duplicate these across many computers that may or may not perform at capacity. By locating these services in one place and sharing them among the blade computers, the overall utilization becomes higher. The specifics of which services are provided varies by vendor.


Power

Computers operate over a range of DC voltages, but utilities deliver power as AC, and at higher voltages than required within computers. Converting this current requires one or more power supply units (or PSUs). To ensure that the failure of one power source does not affect the operation of the computer, even entry-level servers may have redundant power supplies, again adding to the bulk and heat output of the design. The blade enclosure's power supply provides a single power source for all blades within the enclosure. This single power source may come as a power supply in the enclosure or as a dedicated separate PSU supplying DC to multiple enclosures.Sun Blade Modular System
/ref> This setup reduces the number of PSUs required to provide a resilient power supply. The popularity of blade servers, and their own appetite for power, has led to an increase in the number of rack-mountable
uninterruptible power supply An uninterruptible power supply or uninterruptible power source (UPS) is an electrical apparatus that provides emergency power to a load when the input power source or mains power fails. A UPS differs from an auxiliary or emergency power syste ...
(or UPS) units, including units targeted specifically towards blade servers (such as the BladeUPS).


Cooling

During operation, electrical and mechanical components produce heat, which a system must dissipate to ensure the proper functioning of its components. Most blade enclosures, like most computing systems, remove heat by using fans. A frequently underestimated problem when designing high-performance computer systems involves the conflict between the amount of heat a system generates and the ability of its fans to remove the heat. The blade's shared power and cooling means that it does not generate as much heat as traditional servers. blade-enclosures feature variable-speed fans and control logic, or even liquid cooling systemsSun Power and Cooling
HP Thermal Logic technology
that adjust to meet the system's cooling requirements. At the same time, the increased density of blade-server configurations can still result in higher overall demands for cooling with racks populated at over 50% full. This is especially true with early-generation blades. In absolute terms, a fully populated rack of blade servers is likely to require more cooling capacity than a fully populated rack of standard 1U servers. This is because one can fit up to 128 blade servers in the same rack that will only hold 42 1U rack-mount servers.


Networking

Blade servers generally include integrated or optional network interface controllers for
Ethernet Ethernet () is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1 ...
or host adapters for Fibre Channel storage systems or
converged network adapter A converged network adapter (CNA), also called a converged network interface controller (C-NIC), is a computer input/output device that combines the functionality of a host bus adapter (HBA) with a network interface controller (NIC). In other words ...
to combine storage and data via one Fibre Channel over Ethernet interface. In many blades, at least one interface is embedded on the motherboard and extra interfaces can be added using mezzanine cards. A blade enclosure can provide individual external ports to which each network interface on a blade will connect. Alternatively, a blade enclosure can aggregate network interfaces into interconnect devices (such as switches) built into the blade enclosure or in networking blades.Sun Independent I/O
/ref>
/ref>


Storage

While computers typically use hard disks to store operating systems, applications and data, these are not necessarily required locally. Many storage connection methods (e.g. FireWire, SATA, E-SATA, SCSI, SAS DAS, FC and iSCSI) are readily moved outside the server, though not all are used in enterprise-level installations. Implementing these connection interfaces within the computer presents similar challenges to the networking interfaces (indeed iSCSI runs over the network interface), and similarly these can be removed from the blade and presented individually or aggregated either on the chassis or through other blades. The ability to boot the blade from a storage area network (SAN) allows for an entirely disk-free blade, an example of which implementation is the Intel Modular Server System.


Other blades

Since blade enclosures provide a standard method for delivering basic services to computer devices, other types of devices can also utilize blade enclosures. Blades providing switching, routing, storage, SAN and fibre-channel access can slot into the enclosure to provide these services to all members of the enclosure. Systems administrators can use storage blades where a requirement exists for additional local storage.IBM BladeCenter HS21
Verari Storage Blade
/ref>


Uses

Blade servers function well for specific purposes such as web hosting, virtualization, and cluster computing. Individual blades are typically hot-swappable. As users deal with larger and more diverse workloads, they add more processing power, memory and I/O bandwidth to blade servers. Although blade-server technology in theory allows for open, cross-vendor systems, most users buy modules, enclosures,
racks Rack or racks may refer to: Storage and installation * Amp rack, short for amplifier rack, a piece of furniture in which amplifiers are mounted * Bicycle rack, a frame for storing bicycles when not in use * Bustle rack, a type of storage bin ...
and management tools from the same vendor. Eventual standardization of the technology might result in more choices for consumers;http://www.techspot.com/news/26376-intel-endorses-industrystandard-blade-design.html TechSpot increasing numbers of third-party software vendors have started to enter this growing field.https://www.theregister.co.uk/2009/04/07/ssi_blade_specs/ The Register Blade servers do not, however, provide the answer to every computing problem. One can view them as a form of productized server-farm that borrows from
mainframe A mainframe computer, informally called a mainframe or big iron, is a computer used primarily by large organizations for critical applications like bulk data processing for tasks such as censuses, industry and consumer statistics, enterprise ...
packaging, cooling, and power-supply technology. Very large computing tasks may still require server farms of blade servers, and because of blade servers' high power density, can suffer even more acutely from the heating, ventilation, and air conditioning problems that affect large conventional server farms.


History

Developers first placed complete microcomputers on cards and packaged them in standard 19-inch racks in the 1970s, soon after the introduction of 8-bit microprocessors. This architecture was used in the industrial process control industry as an alternative to
minicomputer A minicomputer, or colloquially mini, is a class of smaller general purpose computers that developed in the mid-1960s and sold at a much lower price than mainframe and mid-size computers from IBM and its direct competitors. In a 1970 survey, ' ...
-based control systems. Early models stored programs in EPROM and were limited to a single function with a small real-time executive. The
VMEbus VMEbus (Versa Module Europa or Versa Module Eurocard bus) is a computer bus standard, originally developed for the Motorola 68000 line of CPUs, but later widely used for many applications and standardized by the IEC as ANSI/IEEE 1014-1987. ...
architecture () defined a computer interface that included implementation of a board-level computer installed in a chassis backplane with multiple slots for pluggable boards to provide I/O, memory, or additional computing. In the 1990s, the PCI Industrial Computer Manufacturers Group PICMG developed a chassis/blade structure for the then emerging Peripheral Component Interconnect bus PCI called CompactPCI. CompactPCI was actually invented by Ziatech Corp of San Luis Obispo, CA and developed into an industry standard. Common among these chassis-based computers was the fact that the entire chassis was a single system. While a chassis might include multiple computing elements to provide the desired level of performance and redundancy, there was always one master board in charge, or two redundant fail-over masters coordinating the operation of the entire system. Moreover this system architecture provided management capabilities not present in typical rack mount computers, much more like in ultra-high reliability systems, managing power supplies, cooling fans as well as monitoring health of other internal components. Demands for managing hundreds and thousands of servers in the emerging Internet Data Centers where the manpower simply didn't exist to keep pace a new server architecture was needed. In 1998 and 1999 this new Blade Server Architecture was developed at Ziatech based on their Compact PCI platform to house as many as 14 "blade servers" in a standard 19" 9U high rack mounted chassis, allowing in this configuration as many as 84 servers in a standard 84 Rack Unit 19" rack. What this new architecture brought to the table was a set of new interfaces to the hardware specifically to provide the capability to remotely monitor the health and performance of all major replaceable modules that could be changed/replaced while the system was in operation. The ability to change/replace or add modules within the system while it is in operation is known as Hot-Swap. Unique to any other server system the Ketris Blade servers routed Ethernet across the backplane (where server blades would plug-in) eliminating more than 160 cables in a single 84 Rack Unit high 19" rack. For a large data center tens of thousands of Ethernet cables, prone to failure would be eliminated. Further this architecture provided the capabilities to inventory modules installed in the system remotely in each system chassis without the blade servers operating. This architecture enabled the ability to provision (power up, install operating systems and applications software) (e.g. a Web Servers) remotely from a Network Operations Center (NOC). The system architecture when this system was announced was called Ketris, named after the Ketri Sword, worn by nomads in such a way as to be drawn very quickly as needed. First envisioned by Dave Bottom and developed by an engineering team at Ziatech Corp in 1999 and demonstrated at the Networld+Interop show in May 2000. Patents were awarded for the Ketris blade server architecture. In October 2000 Ziatech was acquired by Intel Corp and the Ketris Blade Server systems would become a product of the Intel Network Products Group. PICMG expanded the CompactPCI specification with the use of standard Ethernet connectivity between boards across the backplane. The PICMG 2.16 CompactPCI Packet Switching Backplane specification was adopted in Sept 2001. This provided the first open architecture for a multi-server chassis. The Second generation of Ketris would be developed at Intel as an architecture for the telecommunications industry to support the build out of IP base telecom services and in particular the LTE (Long Term Evolution) Cellular Network build-out. PICMG followed with this larger and more feature-rich
AdvancedTCA Advanced Telecommunications Computing Architecture (ATCA or AdvancedTCA) is the largest specification effort in the history of the PCI Industrial Computer Manufacturers Group (PICMG), with more than 100 companies participating. Known as AdvancedTCA ...
specification, targeting the telecom industry's need for a high availability and dense computing platform with extended product life (10+ years). While AdvancedTCA system and boards typically sell for higher prices than blade servers, the operating cost (manpower to manage and maintain) are dramatically lower, where operating cost often dwarf the acquisition cost for traditional servers. AdvancedTCA promote them for
telecommunications Telecommunication is the transmission of information by various types of technologies over wire, radio, optical, or other electromagnetic systems. It has its origin in the desire of humans for communication over a distance greater than that ...
customers, however in the real world implementation in Internet Data Centers where thermal as well as other maintenance and operating cost had become prohibitively expensive, this blade server architecture with remote automated provisioning, health and performance monitoring and management would be a significantly less expensive operating cost. The first commercialized blade-server architecture was invented by Christopher Hipp and David Kirkeby, and their patent was assigned to Houston-based RLX Technologies. RLX, which consisted primarily of former
Compaq Computer Corporation Compaq Computer Corporation (sometimes abbreviated to CQ prior to a 2007 rebranding) was an American information technology company founded in 1982 that developed, sold, and supported computers and related products and services. Compaq produced ...
employees, including Hipp and Kirkeby, shipped its first commercial blade server in 2001. RLX was acquired by Hewlett Packard in 2005. The name ''blade server'' appeared when a card included the processor, memory, I/O and non-volatile program storage (
flash memory Flash memory is an electronic non-volatile computer memory storage medium that can be electrically erased and reprogrammed. The two main types of flash memory, NOR flash and NAND flash, are named for the NOR and NAND logic gates. Both use ...
or small
hard disk A hard disk drive (HDD), hard disk, hard drive, or fixed disk is an electro-mechanical data storage device that stores and retrieves digital data using magnetic storage with one or more rigid rapidly rotating platters coated with magn ...
(s)). This allowed manufacturers to package a complete server, with its operating system and applications, on a single card/board/blade. These blades could then operate independently within a common chassis, doing the work of multiple separate server boxes more efficiently. In addition to the most obvious benefit of this packaging (less space consumption), additional efficiency benefits have become clear in power, cooling, management, and networking due to the pooling or sharing of common infrastructure to support the entire chassis, rather than providing each of these on a per server box basis. In 2011, research firm IDC identified the major players in the blade market as HP, IBM,
Cisco Cisco Systems, Inc., commonly known as Cisco, is an American-based multinational digital communications technology conglomerate corporation headquartered in San Jose, California. Cisco develops, manufactures, and sells networking hardware, ...
, and
Dell Dell is an American based technology company. It develops, sells, repairs, and supports computers and related products and services. Dell is owned by its parent company, Dell Technologies. Dell sells personal computers (PCs), servers, data ...
. Other companies selling blade servers include Supermicro,
Hitachi () is a Japanese multinational conglomerate corporation headquartered in Chiyoda, Tokyo, Japan. It is the parent company of the Hitachi Group (''Hitachi Gurūpu'') and had formed part of the Nissan ''zaibatsu'' and later DKB Group and Fuyo G ...
.


Blade models

The prominent brands in the blade server market are Supermicro,
Cisco Systems Cisco Systems, Inc., commonly known as Cisco, is an American-based multinational digital communications technology conglomerate corporation headquartered in San Jose, California. Cisco develops, manufactures, and sells networking hardware, ...
, HPE,
Dell Dell is an American based technology company. It develops, sells, repairs, and supports computers and related products and services. Dell is owned by its parent company, Dell Technologies. Dell sells personal computers (PCs), servers, data ...
and IBM, though the latter sold its x86 server business to
Lenovo Lenovo Group Limited, often shortened to Lenovo ( , ), is a Chinese multinational technology company specializing in designing, manufacturing, and marketing consumer electronics, personal computers, software, business solutions, and related se ...
in 2014 after selling its consumer PC line to Lenovo in 2005. In 2009, Cisco announced blades in its Unified Computing System product line, consisting of 6U high chassis, up to 8 blade servers in each chassis. It had a heavily modified Nexus 5K switch, rebranded as a
fabric Textile is an umbrella term that includes various fiber-based materials, including fibers, yarns, filaments, threads, different fabric types, etc. At first, the word "textiles" only referred to woven fabrics. However, weaving is not ...
interconnect, and management software for the whole system. HP's initial line consisted of two chassis models, the c3000 which holds up to 8 half-height ProLiant line blades (also available in tower form), and the c7000 ( 10U) which holds up to 16 half-height ProLiant blades.
Dell Dell is an American based technology company. It develops, sells, repairs, and supports computers and related products and services. Dell is owned by its parent company, Dell Technologies. Dell sells personal computers (PCs), servers, data ...
's product, the M1000e is a 10U modular enclosure and holds up to 16 half-height PowerEdge blade servers or 32 quarter-height blades.


See also

* Blade PC *
HP BladeSystem BladeSystem is a line of blade server machines from Hewlett Packard Enterprise (Formerly Hewlett-Packard) that was introduced in June 2006. The BladeSystem forms part of the HPE Converged Systems platform, which use a common converged infrast ...
*
Mobile PCI Express Module A Mobile PCI Express Module (MXM) is an interconnect standard for GPUs (MXM Graphics Modules) in laptops using PCI Express created by MXM-SIG. The goal was to create a non-proprietary, industry standard socket, so one could easily upgrade the grap ...
(MXM) * Modular crate electronics * Multibus * Server computer


References


External links


BladeCenter blade servers – x86 processor-based servers
.............................................................................................................................................................................................. {{DEFAULTSORT:Blade Server Server hardware Computer-related introductions in 2001