HOME

TheInfoList



OR:

Biotin (or vitamin B7) is one of the B vitamins. It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids. The name ''biotin'', borrowed from the German , derives from the Ancient Greek word (; 'life') and the suffix "-in" (a suffix used in chemistry usually to indicate 'forming').


Chemical description

Biotin is classified as a heterocyclic compound, with a sulfur-containing ring fused ureido and
tetrahydrothiophene Tetrahydrothiophene is an organosulfur compound with the formula (CH2)4S. The molecule consists of a five-membered saturated ring with four methylene groups and a sulfur atom. It is the saturated analog of thiophene. It is a volatile, colorle ...
group. A C5-carboxylic acid side chain is appended to one of the rings. The ureido ring, containing the −N−CO−N− group, serves as the carbon dioxide carrier in carboxylation reactions. Biotin is a
coenzyme A cofactor is a non- protein chemical compound or metallic ion that is required for an enzyme's role as a catalyst (a catalyst is a substance that increases the rate of a chemical reaction). Cofactors can be considered "helper molecules" that as ...
for five carboxylase enzymes, which are involved in the catabolism of
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ...
s and
fatty acid In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, f ...
s, synthesis of
fatty acid In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, f ...
s, and gluconeogenesis.
Biotinylation In biochemistry, biotinylation is the process of covalently attaching biotin to a protein, nucleic acid or other molecule. Biotinylation is rapid, specific and is unlikely to disturb the natural function of the molecule due to the small size of bio ...
of
histone In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn a ...
proteins in nuclear
chromatin Chromatin is a complex of DNA and protein found in eukaryote, eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important ...
plays a role in chromatin stability and gene expression.


Dietary recommendations

The US National Academy of Medicine updated Dietary Reference Intakes for many vitamins in 1998. At that time there was insufficient information to establish estimated average requirement or recommended dietary allowance, terms that exist for most vitamins. In instances such as this, the academy sets adequate intakes (AIs) with the understanding that at some later date, when the
physiological Physiology (; ) is the scientific study of functions and mechanisms in a living system. As a sub-discipline of biology, physiology focuses on how organisms, organ systems, individual organs, cells, and biomolecules carry out the chemica ...
effects of biotin are better understood, AIs will be replaced by more exact information. The biotin AIs for both males and females are: 5 μg/day of biotin for 0-to-6-month-olds, 6 μg/day of biotin for 7-to-12-month-olds, 8 μg/day of biotin for 1-to-3-year-olds, 12 μg/day of biotin for 4-to-8-year-olds, 20 μg/day of biotin for 9-to-13-year-olds, 25 μg/day of biotin for 14-to-18-year-olds, and 30 μg/day of biotin for those 19 years old and older. The biotin AIs for females who are either pregnant or lactating, respectively, are: 30 μg/day of biotin for pregnant females 14-to-50-years old and 35 μg/day of biotin for lactating females 14-to-50-years old. Australia and New Zealand set AIs similar to the US. The European Food Safety Authority (EFSA) also identifies AIs, setting values at 40 μg/day for adults, pregnancy at 40 μg/day, and breastfeeding at 45 μg/day. For children ages 1–17 years, the AIs increase with age from 20 to 35 μg/day.


Safety

The US National Academy of Medicine estimates upper limits for vitamins and minerals when evidence for a true limit is sufficient. For biotin, however, there is no upper limit because adverse effects of high biotin intake have not been determined. The EFSA also reviewed safety and reached the same conclusion as in the United States.


Labeling regulations

For US food and dietary supplement labeling purposes the amount in a serving is expressed as a percent of daily value. For biotin labeling purposes 100% of the daily value was 300 μg/day, but as of May 27, 2016, it was revised to 30 μg/day to bring it into an agreement with the adequate intake. Compliance with the updated labeling regulations was required by January 1, 2020, for manufacturers with US$10 million or more in annual food sales, and by January 1, 2021, for manufacturers with lower volume food sales. A table of the old and new adult daily values is provided at
Reference Daily Intake The Reference Daily Intake (RDI) used in nutrition labeling on food and dietary supplement products in the U.S. and Canada is the daily intake level of a nutrient that is considered to be sufficient to meet the requirements of 97–98% of healt ...
.


Sources

Biotin is stable at room temperature and is not destroyed by cooking. The dietary biotin intake in Western populations has been estimated to be in the range of 35 to 70 μg/day. Nursing infants ingest about 6 μg/day. Biotin is available in dietary supplements, individually or as an ingredient in multivitamins.


No government fortification programs

According to the Global Fortification Data Exchange, biotin deficiency is so rare that no countries require that foods be fortified.


Physiology

Biotin is a water-soluble B vitamin. Consumption of large amounts as a dietary supplement results in absorption, followed by excretion into urine as biotin. Consumption of biotin as part of a normal diet results in urinary excretion of biotin and biotin metabolites.


Absorption

Biotin in food is bound to proteins. Digestive enzymes reduce the proteins to biotin-bound peptides. The intestinal enzyme biotinidase, found in pancreatic secretions and in the brush border membranes of all three parts of the small intestine, frees biotin, which is then absorbed from the small intestine. When consumed as a biotin dietary supplement, absorption is nonsaturable, meaning that even very high amounts are absorbed effectively. Transport across the jejunum is faster than across the ileum. The large intestine microbiota synthesize amounts of biotin estimated to be similar to the amount taken in the diet, and a significant portion of this biotin exists in the free (protein-unbound) form and, thus, is available for absorption. How much is absorbed in humans is unknown, although a review did report that human epithelial cells of the colon in vitro demonstrated an ability to uptake biotin. Once absorbed, sodium-dependent multivitamin transporter (SMVT) mediates biotin uptake into the liver. SMVT also binds pantothenic acid, so high intakes of either of these vitamins can interfere with transport of the other.


Metabolism and excretion

Biotin catabolism occurs via two pathways. In one, the valeric acid sidechain is cleaved, resulting in bisnorbiotin. In the other pathway, the sulfur is oxidized, resulting in biotin sulfoxide. Urine content is proportionally about half biotin, plus bisnorbiotin, biotin sulfoxide, and small amounts of other metabolites.


Factors that affect biotin requirements

Chronic alcohol use is associated with a significant reduction in plasma biotin. Intestinal biotin uptake also appears to be sensitive to the effect of the anti-
epilepsy Epilepsy is a group of non-communicable neurological disorders characterized by recurrent epileptic seizures. Epileptic seizures can vary from brief and nearly undetectable periods to long periods of vigorous shaking due to abnormal electrica ...
drugs carbamazepine and primidone. Relatively low levels of biotin have also been reported in the urine or plasma of patients who have had a partial
gastrectomy A gastrectomy is a partial or total surgical removal of the stomach. Indications Gastrectomies are performed to treat stomach cancer and perforations of the stomach wall. In severe duodenal ulcers it may be necessary to remove the lower porti ...
or have other causes of achlorhydria, as well as burn patients, elderly individuals, and athletes. Pregnancy and
lactation Lactation describes the secretion of milk from the mammary glands and the period of time that a mother lactates to feed her young. The process naturally occurs with all sexually mature female mammals, although it may predate mammals. The proces ...
may be associated with an increased demand for biotin. In pregnancy, this may be due to a possible acceleration of biotin catabolism, whereas, in lactation, the higher demand has yet to be elucidated. Recent studies have shown marginal biotin deficiency can be present in
human gestation Pregnancy is the time during which one or more offspring develops ( gestates) inside a woman's uterus (womb). A multiple pregnancy involves more than one offspring, such as with twins. Pregnancy usually occurs by sexual intercourse, but ...
, as evidenced by increased urinary excretion of
3-hydroxyisovaleric acid β-Hydroxy β-methylbutyric acid (HMB), otherwise known as its conjugate base, , is a naturally produced substance in humans that is used as a dietary supplement and as an ingredient in certain medical foods that are intended to promote wou ...
, decreased urinary excretion of biotin and bisnorbiotin, and decreased plasma concentration of biotin.


Biosynthesis

Biotin, synthesized in plants, is essential to plant growth and development. Bacteria also synthesize biotin, and it is thought that bacteria resident in the large intestine may synthesize biotin that is absorbed and utilized by the host organism. Synthesis starts from two precursors, alanine and pimeloyl-CoA. These form 7-keto-8-aminopelargonic acid (KAPA). KAPA is transported from plant peroxisomes to mitochondria where it is converted to 7,8-diaminopelargonic acid (DAPA). The enzyme dethiobiotin synthetase catalyzes the formation of the ureido ring via a DAPA carbamate activated with ATP, creating dethiobiotin, which is then converted into biotin. The last step is catalyzed by biotin synthase, a radical SAM enzyme. The sulfur is donated by an unusual Fe-2Sferredoxin.


Cofactor biochemistry

The enzyme
holocarboxylase synthetase Holocarboxylase synthetase (biotin—(propionyl-Coenzyme A-carboxylase (ATP-hydrolysing)) ligase)), also known as protein—biotin ligase, is a family of enzymes ({{{EnzExplorer, 6.3.4.10). This enzyme is important for the effective use of bio ...
covalently attaches biotin to five human carboxylase
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
s: * Acetyl-CoA carboxylase alpha (ACC1) * Acetyl-CoA carboxylase beta (ACC2) * Pyruvate carboxylase (PC) * Methylcrotonyl-CoA carboxylase (MCC) * Propionyl-CoA carboxylase (PCC) For the first two, biotin serves as a cofactor responsible for transfer of
bicarbonate In inorganic chemistry, bicarbonate (IUPAC-recommended nomenclature: hydrogencarbonate) is an intermediate form in the deprotonation of carbonic acid. It is a polyatomic anion with the chemical formula . Bicarbonate serves a crucial biochemi ...
to acetyl-CoA, converting it to malonyl-CoA for
fatty acid synthesis In biochemistry, fatty acid synthesis is the creation of fatty acids from acetyl-CoA and NADPH through the action of enzymes called fatty acid synthases. This process takes place in the cytoplasm of the cell. Most of the acetyl-CoA which is co ...
. PC participates in gluconeogenesis. MCC catalyzes a step in leucine metabolism. PCC catalyzes a step in the metabolism of propionyl-CoA. Metabolic degradation of the biotinylated carboxylases leads to the formation of biocytin. This compound is further degraded by biotinidase to release biotin, which is then reutilized by holocarboxylase synthetase. Biotinylation of
histone In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn a ...
proteins in nuclear chromatin is a
posttranslational modification Post-translational modification (PTM) is the covalent and generally enzymatic modification of proteins following protein biosynthesis. This process occurs in the endoplasmic reticulum and the golgi apparatus. Proteins are synthesized by ribos ...
that plays a role in chromatin stability and gene expression.


Deficiency

Primary biotin deficiency, meaning deficiency as a consequence of too little biotin in the diet, is rare, because biotin is contained in so many foods. Subclinical deficiency can cause mild symptoms, such as hair thinning, brittle fingernails, or skin rash, typically on the face. Aside from inadequate dietary intake (rare), deficiency of biotin can be caused by a genetic disorder that affects biotin metabolism. The most common among these is biotinidase deficiency. Low activity of this enzyme causes a failure to recycle biotin from biocytin. Rarer are carboxylase and biotin transporter deficiences. Neonatal screening for biotinidase deficiency started in the United States in 1984, with many countries now also testing for this genetic disorder at birth. Treatment is lifelong dietary supplement with biotin.


Diagnosis

Low serum and urine biotin are not sensitive indicators of inadequate biotin intake. However, serum testing can be useful for confirmation of consumption of biotin-containing dietary supplements, and whether a period of refraining from supplement use is long enough to eliminate the potential for interfering with drug tests. Indirect measures depend on the biotin requirement for carboxylases. 3-Methylcrotonyl-CoA is an intermediate step in the catabolism of the amino acid leucine. In the absence of biotin, the pathway diverts to
3-hydroxyisovaleric acid β-Hydroxy β-methylbutyric acid (HMB), otherwise known as its conjugate base, , is a naturally produced substance in humans that is used as a dietary supplement and as an ingredient in certain medical foods that are intended to promote wou ...
. Urinary excretion of this compound is an early and sensitive indicator of biotin deficiency.


Deficiency as a result of metabolic disorders

Biotinidase deficiency is a deficiency of the enzyme that recycles biotin, the consequence of an inherited genetic mutation. Biotinidase catalyzes the cleavage of biotin from biocytin and biotinyl-peptides (the proteolytic degradation products of each holocarboxylase) and thereby recycles biotin. It is also important in freeing biotin from dietary protein-bound biotin. Neonatal screening for biotinidase deficiency started in the United States in 1984, which as of 2017 was reported as required in more than 30 countries. Profound biotinidase deficiency, defined as less than 10% of normal serum enzyme activity, which has been reported as 7.1 nmol/min/mL, has an incidence of 1 in 40,000 to 1 in 60,000, but with rates as high as 1 in 10,000 in countries with high incidence of consanguineous marriages (second cousin or closer). Partial biotinidase deficiency is defined as 10% to 30% of normal serum activity. Incidence data stems from government mandated newborn screening. For profound deficiency, treatment is oral dosing with 5 to 20 mg per day. Seizures are reported as resolving in hours to days, with other symptoms resolving within weeks. Treatment of partial biotinidase deficiency is also recommended even though some untreated people never manifest symptoms. Lifelong treatment with supplemental biotin is recommended for both profound and partial biotinidase deficiency. Inherited metabolic disorders characterized by deficient activities of biotin-dependent carboxylases are termed
multiple carboxylase deficiency Multiple carboxylase deficiency is a form of metabolic disorder involving failures of carboxylation enzymes. The deficiency can be in biotinidase or holocarboxylase synthetase. These conditions respond to biotin. Forms include: * Holocarboxyl ...
. These include deficiencies in the enzymes
holocarboxylase synthetase Holocarboxylase synthetase (biotin—(propionyl-Coenzyme A-carboxylase (ATP-hydrolysing)) ligase)), also known as protein—biotin ligase, is a family of enzymes ({{{EnzExplorer, 6.3.4.10). This enzyme is important for the effective use of bio ...
.
Holocarboxylase synthetase deficiency Holocarboxylase synthetase deficiency is an inherited metabolic disorder in which the body is unable to use the vitamin biotin effectively. This disorder is classified as a multiple carboxylase deficiency, a group of disorders characterized by i ...
prevents the body's cells from using biotin effectively and thus interferes with multiple carboxylase reactions. There can also be a genetic defect affecting the sodium-dependent multivitamin transporter protein. Biochemical and clinical manifestations of any of these metabolic disorders can include ketolactic acidosis, organic aciduria,
hyperammonemia Hyperammonemia is a metabolic disturbance characterised by an excess of ammonia in the blood. It is a dangerous condition that may lead to brain injury and death. It may be primary or secondary. Ammonia is a substance that contains nitrogen. I ...
, rash,
hypotonia Hypotonia is a state of low muscle tone (the amount of tension or resistance to stretch in a muscle), often involving reduced muscle strength. Hypotonia is not a specific medical disorder, but a potential manifestation of many different diseases ...
,
seizure An epileptic seizure, informally known as a seizure, is a period of symptoms due to abnormally excessive or synchronous neuronal activity in the brain. Outward effects vary from uncontrolled shaking movements involving much of the body with lo ...
s,
developmental delay Global developmental delay is an umbrella term used when children are significantly delayed in their cognitive and physical development. It can be diagnosed when a child is delayed in one or more milestones, categorised into motor skills, speech ...
, alopecia and
coma A coma is a deep state of prolonged unconsciousness in which a person cannot be awakened, fails to respond normally to painful stimuli, light, or sound, lacks a normal wake-sleep cycle and does not initiate voluntary actions. Coma patients exhi ...
.


Use in biotechnology

Chemically modified versions of biotin are widely used throughout the
biotechnology Biotechnology is the integration of natural sciences and engineering sciences in order to achieve the application of organisms, cells, parts thereof and molecular analogues for products and services. The term ''biotechnology'' was first used ...
industry to isolate proteins and non-protein compounds for biochemical assays. Because egg-derived avidin binds strongly to biotin with a dissociation constant ''K''d ≈ 10−15 M, biotinylated compounds of interest can be isolated from a sample by exploiting this highly stable interaction. First, the chemically modified biotin reagents are bound to the targeted compounds in a solution via a process called biotinylation. The choice of which chemical modification to use is responsible for the biotin reagent binding to a specific protein. Second, the sample is incubated with avidin bound to beads, then rinsed, removing all unbound proteins, while leaving only the biotinylated protein bound to avidin. Last, the biotinylated protein can be eluted from the beads with excess free biotin. The process can also utilize bacteria-derived streptavidin bound to beads, but because it has a higher dissociation constant than avidin, very harsh conditions are needed to elute the biotinylated protein from the beads, which often will denature the protein of interest.


Interference with medical laboratory results

When people are ingesting high levels of biotin in dietary supplements, a consequence can be clinically significant interference with
diagnostic Diagnosis is the identification of the nature and cause of a certain phenomenon. Diagnosis is used in many different disciplines, with variations in the use of logic, analytics, and experience, to determine "cause and effect". In systems enginee ...
blood tests that use biotin-streptavidin technology. This methodology is commonly used to measure levels of hormones such as
thyroid hormones File:Thyroid_system.svg, upright=1.5, The thyroid system of the thyroid hormones T3 and T4 rect 376 268 820 433 Thyroid-stimulating hormone rect 411 200 849 266 Thyrotropin-releasing hormone rect 297 168 502 200 Hypothalamus rect 66 216 386 ...
, and other analytes such as 25-hydroxyvitamin D. Biotin interference can produce both falsely normal and falsely abnormal results. In the US, biotin as a non-prescription dietary supplement is sold in amounts of 1 to 10 mg per serving, with claims for supporting hair and nail health, and as 300 mg per day as a possibly effective treatment for multiple sclerosis (see
Research Research is "creative and systematic work undertaken to increase the stock of knowledge". It involves the collection, organization and analysis of evidence to increase understanding of a topic, characterized by a particular attentiveness ...
). Overconsumption of 5 mg/day or higher causes elevated concentration in plasma that interferes with biotin-streptavidin immunoassays in an unpredictable manner. Healthcare professionals are advised to instruct patients to stop taking biotin supplements for 48 h or even up to weeks before the test, depending on the specific test, dose, and frequency of biotin uptake. Guidance for laboratory staff is proposed to detect and manage biotin interference.


History

In 1916, W. G. Bateman observed that a diet high in raw egg whites caused toxic symptoms in dogs, cats, rabbits, and humans. By 1927, scientists such as Margarete Boas and Helen Parsons had performed experiments demonstrating the symptoms associated with "egg-white injury." They had found that rats fed large amounts of egg-white as their only protein source exhibited neurological dysfunction, hair loss, dermatitis, and eventually, death. In 1936, Fritz Kögl and Benno Tönnis documented isolating a yeast growth factor in a journal article titled "." (Representation of crystallized biotin from egg yolk). The name ''biotin'' derives from the Greek word ('to live') and the suffix "-in" (a general chemical suffix used in organic chemistry). Other research groups, working independently, had isolated the same compound under different names. Hungarian scientist
Paul Gyorgy Paul György (April 7, 1893 – March 1, 1976) was a Hungarian-born American biochemist, nutritionist, and pediatrician best known for his discovery of three B vitamins: riboflavin, B6, and biotin. Gyorgy was also well known for his research into ...
began investigating the factor responsible for egg-white injury in 1933 and in 1939, was successful identifying what he called "Vitamin H" (the H represents , German for 'hair and skin'). Further chemical characterization of vitamin H revealed that it was water-soluble and present in high amounts in the liver. After experiments performed with yeast and ''Rhizobium trifolii'', West and Wilson isolated a compound they called co-enzyme R. By 1940, it was recognized that all three compounds were identical and were collectively given the name: biotin. Gyorgy continued his work on biotin and in 1941 published a paper demonstrating that egg-white injury was caused by the binding of biotin by avidin. Unlike for many vitamins, there is insufficient information to establish a recommended dietary allowance, so dietary guidelines identify an "adequate intake" based on best available science with the understanding that at some later date this will be replaced by more exact information. Using ''E. coli'', a biosynthesis pathway was proposed by Rolfe and Eisenberg in 1968. The initial step was described as a condensation of pimelyl-CoA and alanine to form 7-oxo-8-aminopelargonic acid. From there, they described three-step process, the last being introducing a sulfur atom to form the tetrahydrothiophene ring.


Research


Multiple sclerosis

High-dose biotin (300 mg/day = 10,000 times adequate intake) has been used in
clinical trial Clinical trials are prospective biomedical or behavioral research studies on human participants designed to answer specific questions about biomedical or behavioral interventions, including new treatments (such as novel vaccines, drugs, diet ...
s for treatment of multiple sclerosis, a demyelinating autoimmune disease. The hypothesis is that biotin may promote remyelination of the
myelin Myelin is a lipid-rich material that surrounds nerve cell axons (the nervous system's "wires") to insulate them and increase the rate at which electrical impulses (called action potentials) are passed along the axon. The myelinated axon can ...
sheath of nerve cells, slowing or even reversing neurodegeneration. The proposed mechanisms are that biotin activates acetyl-coA carboxylase, which is a key rate-limiting enzyme during the synthesis of myelin, and by reducing axonal hypoxia through enhanced energy production. Clinical trial results are mixed; a 2019 review concluded that a further investigation of the association between multiple sclerosis symptoms and biotin should be undertaken, whereas two 2020 reviews of a larger number of clinical trials reported no consistent evidence for benefits, and some evidence for increased disease activity and higher risk of relapse.


Hair, nails, skin

In the United States, biotin is promoted as a dietary supplement for strengthening hair and fingernails, though scientific data supporting these outcomes in humans are very weak. A review of the fingernails literature reported brittle nail improvement as evidence from two pre-1990 clinical trials that had administered an oral dietary supplement of 2.5 mg/day for several months, without a placebo control comparison group. There is no more recent clinical trial literature. A review of biotin as treatment for hair loss identified case studies of infants and young children with genetic defect biotin deficiency having improved hair growth after supplementation, but went on to report that "there have been no randomized, controlled trials to prove efficacy of supplementation with biotin in normal, healthy individuals." Biotin is also incorporated into topical hair and skin products with similar claims. The Dietary Supplement Health and Education Act of 1994 states that the US Food and Drug Administration must allow on the product label what are described as "Structure:Function" (S:F) health claims that ingredient(s) are essential for health. For example: Biotin helps maintain healthy skin, hair and nails. If a S:F claim is made, the label must include the disclaimer "This statement has not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease."


Animals

In cattle, biotin is necessary for hoof health. Lameness due to hoof problems is common, with herd prevalence estimated at 10 to 35%. Consequences of lameness include less food consumption, lower milk production, and increased veterinary treatment costs. Results after 4–6 months from supplementing biotin at 20 mg/day into daily diet reduces the risk of lameness. A review of controlled trials reported that supplementation at 20 mg/day increased milk yield by 4.8%. The discussion speculated that this could be an indirect consequence of improved hoof health or a direct effect on milk production. For horses, conditions such as chronic laminitis, cracked hooves, or dry, brittle feet incapable of holding shoes are a common problem. Biotin is a popular nutritional supplement. There are recommendations that horses need 15 to 25 mg/day. Studies report biotin improves the growth of new hoof horn rather than improving the status of existing hoof, so months of supplementation are needed for the hoof wall to be completely replaced.


See also

* Biotin deficiency * Biotin sulfoxide * Biotinidase deficiency *
Biotinylation In biochemistry, biotinylation is the process of covalently attaching biotin to a protein, nucleic acid or other molecule. Biotinylation is rapid, specific and is unlikely to disturb the natural function of the molecule due to the small size of bio ...
*
Multiple carboxylase deficiency Multiple carboxylase deficiency is a form of metabolic disorder involving failures of carboxylation enzymes. The deficiency can be in biotinidase or holocarboxylase synthetase. These conditions respond to biotin. Forms include: * Holocarboxyl ...
* NeutrAvidin * Photobiotin


References


External links

* {{Authority control B vitamins Cofactors Ureas Carboxylic acids Thiolanes