In
mathematics
Mathematics (from Greek: ) includes the study of such topics as numbers (arithmetic and number theory), formulas and related structures (algebra), shapes and spaces in which they are contained (geometry), and quantities and their changes (cal ...
, a bijection, bijective function, one-to-one correspondence, or invertible function, is a
function
Function or functionality may refer to:
Computing
* Function key
A function key is a key on a computer
A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations automatically. Modern comp ...
between the elements of two
sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. In mathematical terms, a bijective function is a
and
mapping of a set ''X'' to a set ''Y''.
The term ''one-to-one correspondence'' must not be confused with ''one-to-one function'' (an
injective function
In , an injective function (also known as injection, or one-to-one function) is a that maps elements to distinct elements; that is, implies . In other words, every element of the function's is the of one element of its . The term must no ...

; see figures).

A bijection from the set ''X'' to the set ''Y'' has an
inverse function
In mathematics
Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (number theory), mathematical structure, structure (algebra), space (geometry), and calculus, change (mathematical analysis, analysis). ...
from ''Y'' to ''X''. If ''X'' and ''Y'' are
finite set
In mathematics
Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (number theory), mathematical structure, structure (algebra), space (geometry), and calculus, change (mathematical analysis, analysis). It ...
s, then the existence of a bijection means they have the same number of elements. For
infinite set
In set theory
illustrating the intersection (set theory), intersection of two set (mathematics), sets.
Set theory is a branch of mathematical logic that studies Set (mathematics), sets, which informally are collections of objects. Although any ...
s, the picture is more complicated, leading to the concept of
cardinal number
150px, Aleph null, the smallest infinite cardinal
In mathematics
Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (number theory), mathematical structure, structure (algebra), space (geometry), and ca ...
—a way to distinguish the various sizes of infinite sets.
A bijective function from a set to itself is also called a ''
permutation
In , a permutation of a is, loosely speaking, an arrangement of its members into a or , or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order o ...

'', and the set of all permutations of a set forms a
symmetry group
In group theory
The popular puzzle Rubik's cube invented in 1974 by Ernő Rubik has been used as an illustration of permutation group">Ernő_Rubik.html" ;"title="Rubik's cube invented in 1974 by Ernő Rubik">Rubik's cube invented in 1974 ...
.
Bijective functions are essential to many areas of mathematics including the definitions of
isomorphism
In mathematics
Mathematics (from Greek: ) includes the study of such topics as numbers (arithmetic and number theory), formulas and related structures (algebra), shapes and spaces in which they are contained (geometry), and quantities and ...

,
homeomorphism
and a donut (torus
In geometry, a torus (plural tori, colloquially donut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanarity, coplanar with the circle.
If the axis of ...
,
diffeomorphism
In mathematics
Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (number theory), mathematical structure, structure (algebra), space (geometry), and calculus, change (mathematical analysis, analysis). ...
,
permutation group
In mathematics
Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (number theory), mathematical structure, structure (algebra), space (geometry), and calculus, change (mathematical analysis, analysis). It ...
, and
projective map
In projective geometry, a homography is an isomorphism
In mathematics
Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (number theory), mathematical structure, structure (algebra), space (geometry), a ...
.
Definition
For a pairing between ''X'' and ''Y'' (where ''Y'' need not be different from ''X'') to be a bijection, four properties must hold:
# each element of ''X'' must be paired with at least one element of ''Y'',
# no element of ''X'' may be paired with more than one element of ''Y'',
# each element of ''Y'' must be paired with at least one element of ''X'', and
# no element of ''Y'' may be paired with more than one element of ''X''.
Satisfying properties (1) and (2) means that a pairing is a
function
Function or functionality may refer to:
Computing
* Function key
A function key is a key on a computer
A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations automatically. Modern comp ...
with
domain
Domain may refer to:
Mathematics
*Domain of a function, the set of input values for which the (total) function is defined
**Domain of definition of a partial function
**Natural domain of a partial function
**Domain of holomorphy of a function
*Doma ...
''X''. It is more common to see properties (1) and (2) written as a single statement: Every element of ''X'' is paired with exactly one element of ''Y''. Functions which satisfy property (3) are said to be "
onto
In , a surjective function (also known as surjection, or onto function) is a that maps an element to every element ; that is, for every , there is an such that . In other words, every element of the function's is the of one element of its ...

''Y'' " and are called
(or ''surjective functions''). Functions which satisfy property (4) are said to be "
one-to-one function
In , an injective function (also known as injection, or one-to-one function) is a that maps elements to distinct elements; that is, implies . In other words, every element of the function's is the of one element of its . The term must no ...
s" and are called
(or ''injective functions''). With this terminology, a bijection is a function which is both a surjection and an injection, or using other words, a bijection is a function which is both "one-to-one" and "onto".
Bijections are sometimes denoted by a two-headed rightwards arrow with tail (), as in ''f'' : ''X'' ⤖ ''Y''. This symbol is a combination of the two-headed rightwards arrow (), sometimes used to denote surjections, and the rightwards arrow with a barbed tail (), sometimes used to denote injections.
Examples
Batting line-up of a baseball or cricket team
Consider the
batting line-up of a
baseball
Baseball is a bat-and-ball games, bat-and-ball game played between two opposing teams who take turns batting (baseball), batting and fielding. The game proceeds when a player on the fielding team (baseball), fielding team, called the pi ...

or
cricket
Cricket is a bat-and-ball gameBat-and-ball may refer to:
*Bat-and-ball games
Bat-and-ball games (or safe haven games) are field games played by two opposing teams, in which the action starts when the defending team throws a ball at a ded ...

team (or any list of all the players of any sports team where every player holds a specific spot in a line-up). The set ''X'' will be the players on the team (of size nine in the case of baseball) and the set ''Y'' will be the positions in the batting order (1st, 2nd, 3rd, etc.) The "pairing" is given by which player is in what position in this order. Property (1) is satisfied since each player is somewhere in the list. Property (2) is satisfied since no player bats in two (or more) positions in the order. Property (3) says that for each position in the order, there is some player batting in that position and property (4) states that two or more players are never batting in the same position in the list.
Seats and students of a classroom
In a classroom there are a certain number of seats. A bunch of students enter the room and the instructor asks them to be seated. After a quick look around the room, the instructor declares that there is a bijection between the set of students and the set of seats, where each student is paired with the seat they are sitting in. What the instructor observed in order to reach this conclusion was that:
# Every student was in a seat (there was no one standing),
# No student was in more than one seat,
# Every seat had someone sitting there (there were no empty seats), and
# No seat had more than one student in it.
The instructor was able to conclude that there were just as many seats as there were students, without having to count either set.
More mathematical examples and some non-examples
* For any set ''X'', the
identity function
Graph of the identity function on the real numbers
In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function (mathematics), function that always returns the same value that was ...

1
''X'': ''X'' → ''X'', 1
''X''(''x'') = ''x'' is bijective.
* The function ''f'': R → R, ''f''(''x'') = 2''x'' + 1 is bijective, since for each ''y'' there is a unique ''x'' = (''y'' − 1)/2 such that ''f''(''x'') = ''y''. More generally, any
linear function
In mathematics
Mathematics (from Greek: ) includes the study of such topics as numbers ( and ), formulas and related structures (), shapes and spaces in which they are contained (), and quantities and their changes ( and ). There is no gene ...

over the reals, ''f'': R → R, ''f''(''x'') = ''ax'' + ''b'' (where ''a'' is non-zero) is a bijection. Each real number ''y'' is obtained from (or paired with) the real number ''x'' = (''y'' − ''b'')/''a''.
* The function ''f'': ''R'' → (−π/2, π/2), given by ''f''(''x'') = arctan(''x'') is bijective, since each real number ''x'' is paired with exactly one angle ''y'' in the interval (−π/2, π/2) so that tan(''y'') = ''x'' (that is, ''y'' = arctan(''x'')). If the
codomain
In mathematics
Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (number theory), mathematical structure, structure (algebra), space (geometry), and calculus, change (mathematical analysis, analysis). It ...

(−π/2, π/2) was made larger to include an integer multiple of π/2, then this function would no longer be onto (surjective), since there is no real number which could be paired with the multiple of π/2 by this arctan function.
* The
exponential function
The exponential function is a mathematical function
Function or functionality may refer to:
Computing
* Function key
A function key is a key on a computer
A computer is a machine that can be programmed to carry out sequences of a ...

, ''g'': R → R, ''g''(''x'') = e
''x'', is not bijective: for instance, there is no ''x'' in R such that ''g''(''x'') = −1, showing that ''g'' is not onto (surjective). However, if the codomain is restricted to the positive real numbers
, then ''g'' would be bijective; its inverse (see below) is the
natural logarithm
The natural logarithm of a number is its logarithm to the base (exponentiation), base of the mathematical constant , which is an Irrational number, irrational and Transcendental number, transcendental number approximately equal to . The natura ...
function ln.
* The function ''h'': R → R
+, ''h''(''x'') = ''x''
2 is not bijective: for instance, ''h''(−1) = ''h''(1) = 1, showing that ''h'' is not one-to-one (injective). However, if the
domain
Domain may refer to:
Mathematics
*Domain of a function, the set of input values for which the (total) function is defined
**Domain of definition of a partial function
**Natural domain of a partial function
**Domain of holomorphy of a function
*Doma ...
is restricted to
,_then_''h''_would_be_bijective;_its_inverse_is_the_positive_square_root_function.
*By_Cantor-Bernstein-Schroder_theorem,_given_any_two_sets_''X''_and_''Y'',_and_two_injective_functions_''f'':_''X_→_Y''_and_''g'':_''Y_→_X'',_there_exists_a_bijective_function_''h'':_''X_→_Y''.
_Inverses
A_bijection_''f''_with_domain_''X''_(indicated_by_''f'':_''X_→_Y''_in_Function_(mathematics)#Notation.html" "title="Cantor-Bernstein-Schroder_theorem.html" ;"title=",\, +\infty\right), then ''h'' would be bijective; its inverse is the positive square root function.
*By Cantor-Bernstein-Schroder theorem">,\, +\infty\right), then ''h'' would be bijective; its inverse is the positive square root function.
*By Cantor-Bernstein-Schroder theorem, given any two sets ''X'' and ''Y'', and two injective functions ''f'': ''X → Y'' and ''g'': ''Y → X'', there exists a bijective function ''h'': ''X → Y''.
Inverses
A bijection ''f'' with domain ''X'' (indicated by ''f'': ''X → Y'' in Function (mathematics)#Notation">functional notation
In mathematics
Mathematics (from Greek: ) includes the study of such topics as numbers (arithmetic and number theory), formulas and related structures (algebra), shapes and spaces in which they are contained (geometry), and quantities and ...
) also defines a converse relation starting in ''Y'' and going to ''X'' (by turning the arrows around). The process of "turning the arrows around" for an arbitrary function does not, ''in general'', yield a function, but properties (3) and (4) of a bijection say that this inverse relation is a function with domain ''Y''. Moreover, properties (1) and (2) then say that this inverse ''function'' is a surjection and an injection, that is, the