HOME

TheInfoList



OR:

The Audion was an electronic detecting or amplifying
vacuum tube A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied. The type known as ...
invented by American electrical engineer
Lee de Forest Lee de Forest (August 26, 1873 – June 30, 1961) was an American inventor and a fundamentally important early pioneer in electronics. He invented the first electronic device for controlling current flow; the three-element " Audion" triode v ...
in 1906.De Forest patented a number of variations of his detector tubes starting in 1906. The patent that most clearly covers the Audion is ,
Space Telegraphy
', filed January 29, 1907, issued February 18, 1908
The link is to a reprint of the paper in the ''Scientific American Supplement'', Nos. 1665 and 1666, November 30, 1907 and December 7, 1907, p.348-350 and 354-356. It was the first
triode A triode is an electronic amplifying vacuum tube (or ''valve'' in British English) consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's ...
, consisting of an evacuated glass tube containing three
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials ...
s: a heated
filament The word filament, which is descended from Latin ''filum'' meaning " thread", is used in English for a variety of thread-like structures, including: Astronomy * Galaxy filament, the largest known cosmic structures in the universe * Solar filament ...
, a grid, and a plate. It is important in the
history of technology The history of technology is the history of the invention of tools and techniques and is one of the categories of world history. Technology can refer to methods ranging from as simple as stone tools to the complex genetic engineering and inf ...
because it was the first widely used electronic device which could amplify. A low power signal at the grid could control much more power in the plate circuit. Audions had more residual gas than later vacuum tubes; the residual gas limited the dynamic range and gave the Audion non-linear characteristics and erratic performance. Originally developed as a radio receiver detector by adding a grid electrode to the Fleming valve, it found little use until its amplifying ability was recognized around 1912 by several researchers, who used it to build the first amplifying
radio receiver In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. Th ...
s and
electronic oscillator An electronic oscillator is an electronic circuit that produces a periodic, oscillating electronic signal, often a sine wave or a square wave or a triangle wave. Oscillators convert direct current (DC) from a power supply to an alternating ...
s.. Republished as The many practical applications for amplification motivated its rapid development, and the original Audion was superseded within a few years by improved versions with higher vacuum.


History

It had been known since the middle of the 19th century that gas flames were electrically conductive, and early wireless experimenters had noticed that this conductivity was affected by the presence of
radio waves Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz ( GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (s ...
. De Forest found that gas in a partial
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often ...
heated by a conventional lamp filament behaved much the same way, and that if a wire were wrapped around the glass housing, the device could serve as a detector of radio signals. In his original design, a small metal plate was sealed into the lamp housing, and this was connected to the positive terminal of a 22–volt battery via a pair of headphones, the negative terminal being connected to one side of the lamp filament. When wireless signals were applied to the wire wrapped around the outside of the glass, they caused disturbances in the current which produced sounds in the headphones. This was a significant development as existing commercial wireless systems were heavily protected by
patent A patent is a type of intellectual property that gives its owner the legal right to exclude others from making, using, or selling an invention for a limited period of time in exchange for publishing an enabling disclosure of the invention."A ...
s; a new type of detector would allow de Forest to market his own system. He eventually discovered that connecting the antenna circuit to a third electrode placed directly in the space current path greatly improved the sensitivity; in his earliest versions, this was simply a piece of wire bent into the shape of a gridiron (hence ''grid''). The Audion provided power gain; with other detectors, all of the power to operate the headphones had to come from the antenna circuit itself. Consequently, weak transmitters could be heard at greater distances.


Patents and disputes

De Forest and everybody else at the time greatly underestimated the potential of his grid Audion, imagining it to be limited to mostly military applications. It is significant that de Forest apparently did not see its potential as a telephone repeater amplifier at the time he filed the patent claiming it, even though he had previously patented amplification devices and crude electromechanical ''note magnifiers'' had been the bane of the telephone industry for at least two decades. (Ironically, in the years of patent disputes leading up to World War I, it was only this "loophole" that allowed vacuum triodes to be manufactured at all since de Forest's grid Audion patent did not mention this application). De Forest was granted a patent for his early two-electrode version of the Audion on November 13, 1906 (), and the "triode" (three-electrode) version was patented in 1908 (). De Forest continued to claim that he developed the Audion independently from
John Ambrose Fleming Sir John Ambrose Fleming FRS (29 November 1849 – 18 April 1945) was an English electrical engineer and physicist who invented the first thermionic valve or vacuum tube, designed the radio transmitter with which the first transatlantic r ...
's earlier research on the
thermionic valve A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied. The type known as a ...
(for which Fleming received Great Britain patent 24850 and the American Fleming valve patent ), and de Forest became embroiled in many radio-related patent disputes. De Forest was famous for saying that he "didn't know why it worked, it just did". He always referred to the vacuum triodes developed by other researchers as "Oscillaudions", although there is no evidence that he had any significant input to their development. It is true that after the invention of the true vacuum triode in 1913 (see below), de Forest continued to manufacture various types of radio transmitting and receiving apparatus, (examples of which are illustrated on this page). However, although he routinely described these devices as using "Audions", they actually used high-vacuum triodes, using circuitry very similar to that developed by other experimenters. In 1914,
Columbia University Columbia University (also known as Columbia, and officially as Columbia University in the City of New York) is a private research university in New York City. Established in 1754 as King's College on the grounds of Trinity Church in Manhatt ...
student
Edwin Howard Armstrong Edwin Howard Armstrong (December 18, 1890 – February 1, 1954) was an American electrical engineer and inventor, who developed FM (frequency modulation) radio and the superheterodyne receiver system. He held 42 patents and received numerous awa ...
worked with professor John Harold Morecroft to document the electrical principles of the Audion. Armstrong published his explanation of the Audion in '' Electrical World'' in December 1914, complete with circuit diagrams and
oscilloscope An oscilloscope (informally a scope) is a type of electronic test instrument that graphically displays varying electrical voltages as a two-dimensional plot of one or more signals as a function of time. The main purposes are to display repetiti ...
graphs. In March and April 1915, Armstrong spoke to the Institute of Radio Engineers in New York and Boston, respectively, presenting his paper "Some Recent Developments in the Audion Receiver", which was published in September. A combination of the two papers was reprinted in other journals such as the ''Annals of the New York Academy of Sciences''. When Armstrong and de Forest later faced each other in a dispute over the regeneration patent, Armstrong was able to demonstrate conclusively that de Forest still had no idea how it worked. The problem was that (possibly to distance his invention from the Fleming valve) de Forest's original patents specified that low-pressure gas inside the Audion was essential to its operation (Audion being a contraction of "Audio-Ion"), and in fact early Audions had severe reliability problems due to this gas being adsorbed by the metal electrodes. The Audions sometimes worked extremely well; at other times they would barely work at all. As well as de Forest himself, numerous researchers had tried to find ways to improve the reliability of the device by stabilizing the partial vacuum. Much of the research that led to the development of true vacuum tubes was carried out by
Irving Langmuir Irving Langmuir (; January 31, 1881 – August 16, 1957) was an American chemist, physicist, and engineer. He was awarded the Nobel Prize in Chemistry in 1932 for his work in surface chemistry. Langmuir's most famous publication is the 1919 ar ...
in the
General Electric General Electric Company (GE) is an American multinational conglomerate founded in 1892, and incorporated in New York state and headquartered in Boston. The company operated in sectors including healthcare, aviation, power, renewable ene ...
(GE) research laboratories.


Kenotron and Pliotron

Langmuir had long suspected that certain assumed limitations on the performance of various low-pressure and vacuum electrical devices, might not be fundamental physical limitations at all, but simply due to contamination and impurities in the manufacturing process. His first success was in demonstrating that, contrary to what Edison and others had long asserted, incandescent lamps could function more efficiently and with longer life if the glass envelope was filled with low-pressure inert gas rather than a complete vacuum. However, this only worked if the gas used was meticulously 'scrubbed" of all traces of oxygen and water vapor. He then applied the same approach to producing a rectifier for the newly developed "Coolidge" X-ray tubes. Again contrary to what had been widely believed to be possible, by virtue of meticulous cleanliness and attention to detail, he was able to produce versions of the Fleming Diode that could rectify hundreds of thousands of volts. His rectifiers were called "Kenotrons" from the Greek ''keno'' (empty, contains nothing, as in a vacuum) and ''tron'' (device, instrument). He then turned his attention to the Audion tube, again suspecting that its notoriously unpredictable behaviour might be tamed with more care in the manufacturing process. However he took a somewhat unorthodox approach. Instead of trying to stabilize the partial vacuum, he wondered if it was possible to make the Audion function with the total vacuum of a Kenotron, since that was somewhat easier to stabilize. He soon realized that his "vacuum" Audion had markedly different characteristics from the de Forest version, and was really a quite different device, capable of linear amplification and at much higher frequencies. To distinguish his device from the Audion he named it the "Pliotron", from the Greek ''plio'' (more or extra, in this sense meaning
gain Gain or GAIN may refer to: Science and technology * Gain (electronics), an electronics and signal processing term * Antenna gain * Gain (laser), the amplification involved in laser emission * Gain (projection screens) * Information gain in de ...
, more signal coming out than went in). Essentially, he referred to all his vacuum tube designs as Kenotrons, the Pliotron basically being a specialized type of Kenotron. However, because Pliotron and Kenotron were registered trademarks, technical writers tended to use the more generic term "vacuum tube". By the mid-1920s, the term "Kenotron" had come to exclusively refer to vacuum tube rectifiers, while the term "Pliotron" had fallen into disuse. Ironically, in popular usage, the sound-alike brands "Radiotron" and "Ken-Rad" outlasted the original names.


Applications and use

De Forest continued to manufacture and supply Audions to the US Navy up until the early 1920s, for maintenance of existing equipment, but elsewhere they were regarded as well and truly obsolete by then. It was the vacuum
triode A triode is an electronic amplifying vacuum tube (or ''valve'' in British English) consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's ...
that made practical radio broadcasts a reality. Prior to the introduction of the Audion, radio receivers had used a variety of detectors including
coherer The coherer was a primitive form of radio signal detector used in the first radio receivers during the wireless telegraphy era at the beginning of the 20th century. Its use in radio was based on the 1890 findings of French physicist Édouard Bran ...
s, barretters, and
crystal detector A crystal detector is an obsolete electronic component used in some early 20th century radio receivers that consists of a piece of crystalline mineral which rectifies the alternating current radio signal. It was employed as a detector (dem ...
s. The most popular crystal detector consisted of a small piece of
galena Galena, also called lead glance, is the natural mineral form of lead(II) sulfide (PbS). It is the most important ore of lead and an important source of silver. Galena is one of the most abundant and widely distributed sulfide minerals. It cr ...
crystal probed by a fine wire commonly referred to as a " cat's-whisker detector". They were very unreliable, requiring frequent adjustment of the cat's whisker and offered no amplification. Such systems usually required the user to listen to the signal through headphones, sometimes at very low volume, as the only energy available to operate the headphones was that picked up by the antenna. For long distance communication huge antennas were normally required, and enormous amounts of electrical power had to be fed into the transmitter. The Audion was a considerable improvement on this, but the original devices could not provide any subsequent amplification to what was produced in the signal detection process. The later vacuum triodes allowed the signal to be amplified to any desired level, typically by feeding the amplified output of one triode into the grid of the next, eventually providing more than enough power to drive a full-sized speaker. Apart from this, they were able to amplify the incoming radio signals prior to the detection process, making it work much more efficiently. Vacuum tubes could also be used to make superior
radio transmitter In electronics and telecommunications, a radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the ...
s. The combination of much more efficient transmitters and much more sensitive receivers revolutionized radio communication during
World War I World War I (28 July 1914 11 November 1918), often abbreviated as WWI, was List of wars and anthropogenic disasters by death toll, one of the deadliest global conflicts in history. Belligerents included much of Europe, the Russian Empire, ...
. By the late 1920s such "tube radios" began to become a fixture of most
Western world The Western world, also known as the West, primarily refers to the various nations and states in the regions of Europe, North America, and Oceania.
households, and remained so until long after the introduction of
transistor upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch ...
radios in the mid-1950s. In modern
electronics The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
, the
vacuum tube A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied. The type known as ...
has been largely superseded by solid state devices such as the
transistor upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch ...
, invented in 1947 and implemented in
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s in 1959, although vacuum tubes remain to this day in such applications as high-powered transmitters, guitar amplifiers and some high fidelity audio equipment.


References


Further reading

* * * ''Where Good Ideas Come From'', Chapter V, Steven Johnson, Riverhead Books, (2011).


External links


1906 photograph of the original Audion tube, from New York Public Library
* https://web.archive.org/web/20140511182508/http://www.privateline.com/TelephoneHistory3/empireoftheair.html * http://www.britannica.com/EBchecked/topic/1262240/radio-technology/25131/The-Fleming-diode-and-De-Forest-Audion * . Reprint of . (Includes comments from de Forest.)
The Audion: A new Receiver for Wireless Telegraphy
Lee de Forest, Scientific American Supplement No. 1665, November 30, 1907, pages 348-350, Scientific American Supplement No. 1666, December 7, 1907, page 354–356.
Lee de Forest's Audion Piano on '120 years Of Electronic Music'
* https://books.google.com/books?id=YEASAAAAIAAJ&pg=PA166 de Forest and Armstong debate * *: Also page 43 stating, *:: Regular Audion Detector Bulbs are not adapted for the reception of continuous waves, because the vacuum is not correct for the purpose and because the filaments must be operated at such a high intensity that they give very short service, making them unnecessarily expensive. *: Also page 44 stating, *:: BLUE DISCHARGE OF GLOW *::  This appears in some Audion Bulbs and not in others. If allowed to persist, the vacuum automatically increases. For this reason the glow should not be allowed to appear and certainly not to continue, as the vacuum may rise to a very high value, requiring very high voltage in the “B” battery. {{Authority control Audiovisual introductions in 1906 Vacuum tubes American inventions sv:Elektronrör#Trioden