atom economy
   HOME

TheInfoList



OR:

Atom economy (atom efficiency/percentage) is the
conversion Conversion or convert may refer to: Arts, entertainment, and media * "Conversion" (''Doctor Who'' audio), an episode of the audio drama ''Cyberman'' * "Conversion" (''Stargate Atlantis''), an episode of the television series * "The Conversion" ...
efficiency of a chemical process in terms of all
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s involved and the desired products produced. The simplest definition was introduced by
Barry Trost Barry M. Trost (born June 13, 1941, in Philadelphia) is an American chemist who is the Job and Gertrud Tamaki Professor Emeritus in the School of Humanities and Sciences at Stanford University. The Tsuji-Trost reaction and the Trost ligand ar ...
in 1991 and is equal to the ratio between the mass of desired product to the total mass of products, expressed as a percentage. The concept of atom economy (AE) and the idea of making it a primary criterion for improvement in chemistry, is a part of the green chemistry movement that was championed by
Paul Anastas Paul T. Anastas (born May 16, 1962 in Quincy, Massachusetts)David E. Newton''Chemistry of the Environment.''Infobase Publishing, 2009, , p. 185. is an American scientist, inventor, author, entrepreneur, professor, and public servant. He is ...
from the early 1990s. Atom economy is an important concept of
green chemistry Green chemistry, also called sustainable chemistry, is an area of chemistry and chemical engineering focused on the design of products and processes that minimize or eliminate the use and generation of hazardous substances. While environmental che ...
philosophy, and one of the most widely used metrics for measuring the "greenness" of a process or synthesis. Good atom economy means most of the atoms of the reactants are incorporated in the desired products and only small amounts of unwanted byproducts are formed, reducing the economic and environmental impact of waste disposal. Atom economy can be written as: :\text = \frac \times 100% For example, if we consider the reaction :A + B \rightarrow C + D, where C is the desired product, then :\text = \frac \% Optimal atom economy is 100%. Atom economy is a different concern than
chemical yield In chemistry, yield, also referred to as reaction yield, is a measure of the quantity of moles of a product formed in relation to the reactant consumed, obtained in a chemical reaction, usually expressed as a percentage. Yield is one of the pr ...
, because a high-yielding process can still result in substantial byproducts. Examples include the
Cannizzaro reaction The Cannizzaro reaction, named after its discoverer Stanislao Cannizzaro, is a chemical reaction which involves the base-induced disproportionation of two molecules of a non-enolizable aldehyde to give a primary alcohol and a carboxylic acid. ...
, in which approximately 50% of the reactant aldehyde becomes the other oxidation state of the target; the
Wittig Wittig is a surname, and may refer to: * Burghardt Wittig (born 1947), German biochemist * Curt Wittig, American chemist * David Wittig (born 1955), American executive * Edward Wittig (1879–1941), Polish sculptor * Ferdinand Wittig (1851-1909 ...
and
Suzuki reaction The Suzuki reaction is an organic reaction, classified as a cross-coupling reaction, where the coupling partners are a boronic acid and an organohalide and the catalyst is a palladium(0) complex. It was first published in 1979 by Akira Suzuki, ...
s which use high-mass reagents that ultimately become waste; and the
Gabriel synthesis The Gabriel synthesis is a chemical reaction that transforms primary alkyl halides into primary amines. Traditionally, the reaction uses potassium phthalimide. The reaction is named after the German chemist Siegmund Gabriel. The Gabriel reaction ...
, which produces a
stoichiometric Stoichiometry refers to the relationship between the quantities of reactants and products before, during, and following chemical reactions. Stoichiometry is founded on the law of conservation of mass where the total mass of the reactants equ ...
quantity of
phthalic acid Phthalic acid is an aromatic dicarboxylic acid, with formula C6H4(CO2H)2. Although phthalic acid is of modest commercial importance, the closely related derivative phthalic anhydride is a commodity chemical produced on a large scale. Phthalic aci ...
salts. If the desired product has an
enantiomer In chemistry, an enantiomer ( /ɪˈnænti.əmər, ɛ-, -oʊ-/ ''ih-NAN-tee-ə-mər''; from Ancient Greek ἐνάντιος ''(enántios)'' 'opposite', and μέρος ''(méros)'' 'part') – also called optical isomer, antipode, or optical ant ...
the reaction needs to be sufficiently
stereoselective In chemistry, stereoselectivity is the property of a chemical reaction in which a single reactant forms an unequal mixture of stereoisomers during a non-stereospecific creation of a new stereocenter or during a non-stereospecific transformation of ...
even when atom economy is 100%. A Diels-Alder reaction is an example of a potentially very atom efficient reaction that also can be chemo-, regio-, diastereo- and enantioselective. Catalytic hydrogenation comes the closest to being an ideal reaction that is extensively practiced both industrially and academically. Atom economy can also be adjusted if a pendant group is recoverable, for example
Evans auxiliary The aldol reaction is a means of forming carbon–carbon bonds in organic chemistry. Discovered independently by the Russian chemist Alexander Borodin in 1869 and by the French chemist Charles-Adolphe Wurtz in 1872, the reaction combines two ca ...
groups. However, if this can be avoided it is more desirable, as recovery processes will never be 100%. Atom economy can be improved upon by careful selection of starting materials and a
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
system. Poor atom economy is common in
fine chemicals In chemistry, fine chemicals are complex, single, pure chemical substances, produced in limited quantities in multipurpose plants by multistep batch chemical or biotechnological processes. They are described by exacting specifications, used f ...
or
pharmaceuticals A medication (also called medicament, medicine, pharmaceutical drug, medicinal drug or simply drug) is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy (pharmacotherapy) is an important part of the medical field and rel ...
synthesis, and especially in research, where the aim to readily and reliably produce a wide range of complex compounds leads to the use of versatile and dependable, but poorly atom-economical reactions. For example, synthesis of an alcohol is readily accomplished by reduction of an ester with
lithium aluminium hydride Lithium aluminium hydride, commonly abbreviated to LAH, is an inorganic compound with the chemical formula Li Al H4. It is a white solid, discovered by Finholt, Bond and Schlesinger in 1947. This compound is used as a reducing agent in organic ...
, but the reaction necessarily produces a voluminous floc of aluminum salts, which have to be separated from the product alcohol and disposed of. The cost of such hazardous material disposal can be considerable. Catalytic hydrogenolysis of an ester is the analogous reaction with a high atom economy, but it requires catalyst optimization, is a much slower reaction and is not applicable universally.


Creating reactions utilizing atom economy

It is fundamental in chemical reactions of the form A+B→ C+D that two products are necessarily generated though product C may have been the desired one. That being the case, D is considered a byproduct. As it is a significant goal of green chemistry to maximize the efficiency of the reactants and minimize the production of waste, D must either be found to have use, be eliminated or be as insignificant and innocuous as possible. With the new equation of the form A+B→C, the first step in making chemical manufacturing more efficient is the use of reactions that resemble simple addition reactions with the only other additions being catalytic materials.


References

{{Reflist Stoichiometry Green chemistry