HOME

TheInfoList



OR:

The argument of periapsis (also called argument of perifocus or argument of pericenter), symbolized as ''ω'', is one of the
orbital element Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same o ...
s of an
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
ing body. Parametrically, ''ω'' is the angle from the body's ascending node to its periapsis, measured in the direction of motion. For specific types of orbits, terms such as argument of perihelion (for heliocentric orbits), argument of perigee (for geocentric orbits), argument of periastron (for orbits around stars), and so on, may be used (see
apsis An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any ell ...
for more information). An argument of periapsis of 0° means that the orbiting body will be at its closest approach to the central body at the same moment that it crosses the plane of reference from South to North. An argument of periapsis of 90° means that the orbiting body will reach periapsis at its northmost distance from the plane of reference. Adding the argument of periapsis to the longitude of the ascending node gives the longitude of the periapsis. However, especially in discussions of binary stars and exoplanets, the terms "longitude of periapsis" or "longitude of periastron" are often used synonymously with "argument of periapsis".


Calculation

In
astrodynamics Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft. The motion of these objects is usually calculated from Newton's laws of ...
the argument of periapsis ''ω'' can be calculated as follows: :\omega = \arccos ::If ''ez'' < 0 then ''ω'' → 2 − ''ω''. where: * n is a vector pointing towards the ascending node (i.e. the ''z''-component of n is zero), * e is the eccentricity vector (a vector pointing towards the periapsis). In the case of
equatorial orbit A near-equatorial orbit is an orbit that lies close to the Equator, equatorial plane of the object orbited. Such an orbit has an inclination near 0°. On Earth, such orbits lie on the celestial equator, the great circle of the imaginary celestial s ...
s (which have no ascending node), the argument is strictly undefined. However, if the convention of setting the longitude of the ascending node Ω to 0 is followed, then the value of ''ω'' follows from the two-dimensional case: :\omega = \arctan2\left(e_y, e_x\right) ::If the orbit is clockwise (i.e. (r × v)''z'' < 0) then ''ω'' → 2 − ''ω''. where: *''ex'' and ''ey'' are the ''x''- and ''y''-components of the eccentricity vector e. In the case of circular orbits it is often assumed that the periapsis is placed at the ascending node and therefore ''ω'' = 0. However, in the professional exoplanet community, ''ω'' = 90° is more often assumed for circular orbits, which has the advantage that the time of a planet's inferior conjunction (which would be the time the planet would transit if the geometry were favorable) is equal to the time of its periastron.


See also

* Apsidal precession * Kepler orbit * Orbital mechanics * Orbital node


References


External links


Argument Of Perihelion
i
Swinburne University Astronomy
Website {{orbits Orbits