HOME

TheInfoList



OR:

Architectural gear ratio, also called anatomical gear ratio (AGR) is a feature of
pennate muscle A pennate or pinnate muscle (also called a penniform muscle) is a type of skeletal muscle with fascicles that attach obliquely (in a slanting position) to its tendon. This type of muscle generally allows higher force production but a smaller ra ...
defined by the ratio between the longitudinal strain of the muscle and
muscle fiber A muscle cell is also known as a myocyte when referring to either a cardiac muscle cell (cardiomyocyte), or a smooth muscle cell as these are both small cells. A skeletal muscle cell is long and threadlike with many nuclei and is called a musc ...
strain. It is sometimes also defined as the ratio between muscle-
shortening Shortening is any fat that is a solid at room temperature and used to make crumbly pastry and other food products. Although butter is solid at room temperature and is frequently used in making pastry, the term ''shortening'' seldom refers to bu ...
velocity and fiber-shortening velocity. AGR = εxf where εx = longitudinal strain (or muscle-shortening velocity) and εf is fiber strain (or fiber-shortening velocity) In
fusiform Fusiform means having a spindle-like shape that is wide in the middle and tapers at both ends. It is similar to the lemon-shape, but often implies a focal broadening of a structure that continues from one or both ends, such as an aneurysm on a ...
muscle, the fibers are longitudinal, so longitudinal strain is equal to fiber strain, and AGR is always 1. As the pennate muscle is activated, the fibers rotate as they shorten and pull at an angle. In pennate muscles, fibers are oriented at an angle to the muscle's
line of action In physics, the line of action (also called line of application) of a force ''(F)'' is a geometric representation of how the force is applied. It is the line through the point at which the force is applied in the same direction as the vector .M ...
and rotate as they shorten, becoming more
oblique Oblique may refer to: * an alternative name for the character usually called a slash (punctuation) ( / ) * Oblique angle, in geometry * Oblique triangle, in geometry *Oblique lattice, in geometry * Oblique leaf base, a characteristic shape of the ...
such that the fraction of force directed along the muscle's line of action decreases throughout a contraction. Force output is dependent upon the angle of fiber rotation, so changes in muscle thickness and the vector of change in thickness vary; based upon the force being produced. Due to the rotational motion; pennate muscles operate at low velocities (low shortening distance). The shortening velocity of the pennate muscle as a whole is greater than that of the individual fibers. This gives rise to the property of AGR. Fiber rotation decreases a muscle's output force but increases output velocity by allowing the muscle to function at a higher gear ratio (muscle velocity/fiber velocity). Azizi and Brainerd demonstrated that the gear ratio of pennate muscle can vary; dependent on external load. Segmented musculature, like pennate muscle, has fibers aligned at an angle and due to this feature of design, when muscle fibers increase in angle with respect to the
medial axis The medial axis of an object is the set of all points having more than one closest point on the object's boundary. Originally referred to as the topological skeleton, it was introduced in 1967 by Harry Blum as a tool for biological shape reco ...
, along with the direction and amount of muscle bulging, the Architectural gear ratio increases. A variable gear ratio, based upon different anatomical position, loading and movement conditions, has since been dubbed spatially varying gear ratio. The occurrence of spatially varying gear ratio gives rise to a new insight of muscle biology; “inhomogenous muscle mechanics.” One feature of the ratio is that there is an optimal gear ratio for each muscle; as the length-tension and force-velocity relationships describe. Length-tension refers to the max tension that can be created over the muscle fiber strain range and force-velocity refers to the power that is possible of the fiber compared to the shortening velocity. These two features of musculature help to define an optimal AGR for a muscle.


Muscle model

The Architectural gear ratio is explained through the segmented muscle model 3 proposed by Emanuel Azizi, where a muscle segment is shown as a single muscle fiber attached to the myosepta of a '' Siren lacertina'' an aquatic salamander at a certain acute, pennation angle. The model allows segments to bulge out differently in the horizontal, and vertical direction and was used to calculate the Architectural gear ratio of each segment. Preliminary models results show that with muscle bulging, the Architectural gear ratio will increase. Different bulging conditions were studied, and shown in Fig. 2 The model results show the more a muscle bulges in dorsoventral height, the further the muscle fibers shorten, therefore providing a higher Architectural gear ratio. In pennate muscles, segments with higher pennation angles put out less force per shortening muscle fiber. Therefore, the architectural gear ratio of a pennate muscle is higher than the architectural gear ratio of spindle like muscles (e.g. fusiform). A smaller fiber length neutralizes this higher architectural gear ratio if the muscle fibers must be squeezed into the same space.


Pennation angle and muscle injury

The
rotator cuff The rotator cuff is a group of muscles and their tendons that act to stabilize the human shoulder and allow for its extensive range of motion. Of the seven scapulohumeral muscles, four make up the rotator cuff. The four muscles are the supra ...
comprises four pennate muscles, the
supraspinatus The supraspinatus (plural ''supraspinati'') is a relatively small muscle of the upper back that runs from the supraspinous fossa superior portion of the scapula (shoulder blade) to the greater tubercle of the humerus. It is one of the four rotator ...
,
infraspinatus In human anatomy, the infraspinatus muscle is a thick triangular muscle, which occupies the chief part of the infraspinatous fossa.''Gray's Anatomy'', see infobox. As one of the four muscles of the rotator cuff, the main function of the infraspin ...
,
subscapularis The subscapularis is a large triangular muscle which fills the subscapular fossa and inserts into the lesser tubercle of the humerus and the front of the capsule of the shoulder-joint. Structure It arises from its medial two-thirds and So ...
and
teres minor The teres minor (Latin ''teres'' meaning 'rounded') is a narrow, elongated muscle of the rotator cuff. The muscle originates from the lateral border and adjacent posterior surface of the corresponding right or left scapula and inserts at both the ...
, and their accompanying tendons. These muscles form a cuff around the
glenohumeral joint The shoulder joint (or glenohumeral joint from Greek ''glene'', eyeball, + -''oid'', 'form of', + Latin ''humerus'', shoulder) is structurally classified as a synovial ball-and-socket joint and functionally as a diarthrosis and multiaxial joint ...
and function to stabilize and manipulate the shoulder.Zuo J, Sano H, Itoi E. Changes in pennation agnle in rotator cuff muscles with torn tendons. J Orthop Sci. 2011. The pennation angle of the rotator cuff myofibers, the angle at which fibers connect to the associated tendon, affects the contractile properties and function of the whole pennate muscle. For example, the pennation angle determines the architectural gear ratio at which a pennate muscle operates. A large initial pennation angle results in a large AGR and velocity amplification. A 2011 study on human cadaveric shoulders suggests tendon tears may affect the pennation angle of the rotator cuff muscles. Researchers compared pennation angle between a control group and tear groups comprising either partial or complete-thickness tendon tears. Via dissection of ten injured and ten non-injured cadeveric shoulders, the study discovered a correlation between tendon tear size and an increase in pennation angle among two of the rotator cuff muscles. Pennation angle remained unaffected across all rotator cuff muscles in the partial tendon tear group, suggesting a threshold tear size must be exceeded to produce any changes in pennation angle. Full-thickness tendon tears did not affect the pennation angle of the subscapularis or teres minor muscles. However, a correlation between full-thickness rotator cuff tear size and the pennation angle of the supraspnatus and infraspinatus muscles was evident. The length of the full-thickness tendon tear strongly correlated with an increase in the pennation angle of the supraspinatus muscle. In addition, a moderately strong association between the area of the full-thickness tear and the resulting increase in pennation angle of the infraspinatus was visible. The increase in pennation angle may lead to changes in muscle structure. In a study utilizing sheep subjects, a chronic rotator cuff tear resulted in an increase in both the pennation angle and separation between myofibers of the rotator cuff muscles. Fat cells then populated the rearranged muscle. This phenomenon was also evident in the aforementioned human experiment. The increase in pennation angle following full-thickness tendon tears will result in a change to the PCSA of the supraspinatus and infraspinutus muscles. This would reduce the force producing capacity of these muscles. However, partial tendon tears, which did not result in a change to pennation in any of the rotator cuff muscles, may not impair the force producing properties of the muscles. Azizi’s observations on variable gearing in pennate muscles further suggests tendon tears will affect the AGR of the supraspinatus and infraspinutus. The greater pennation angle could result in an increased AGR. Some scientists suggest patch grafts ought to be applied to irreparable rotator cuff tears. Though this practice lessens pain, muscle strength is not fully recovered. The abovementioned human rotator cuff study correlates pennation angle with tear length in the supraspinatus muscle. Therefore, a patch graft may not resolve the length change necessary to restore pennation angle; retraction of the torn tendon may lessen the post-tear pennation angle and restore muscle strength to a greater extent. Intrafasciular strain showed that the muscle was nonuniform, and that the architectural gear ratio is the highest at the proximal region of the muscle but then decreases towards the distal region. “ It is currently not possible to determine the precise distribution of stress throughout a muscle, but it seems reasonable to assume that the total (integrated) force at any cross section of the muscle and tendon remains fairly constant along the proximodistal axis. The smaller cross-sectional areas as the muscle thins and becomes tendon will thus result in a higher stress concentration to accommodate the same stress over a smaller area and therefore potentially higher strains if material properties remained constant."


Muscle architecture and resistance training

The
muscle architecture Muscle architecture is the physical arrangement of muscle fibers at the macroscopic level that determines a muscle’s mechanical function. There are several different muscle architecture types including: parallel, pennate and hydrostats. Force pr ...
of pennate muscles, such as the human
quadriceps The quadriceps femoris muscle (, also called the quadriceps extensor, quadriceps or quads) is a large muscle group that includes the four prevailing muscles on the front of the thigh. It is the sole extensor muscle of the knee, forming a large ...
, is highly plastic and strongly influences contractile properties. Changes to pennate muscle architectural properties, such as pennation angle and thereby the PCSA, can alter the muscle’s force-producing capabilities as well as the AGR at which the muscle operates. Parallelogram models predict that total PCSA of bipennate muscles increases in proportion to sin(θpennation) while total force exerted on the associated aponeurosis decreases with cos(θpennation). This theorizes that pennate muscle force generation increases until a 45 degree pennation angle is achieved.Aagaard P, Andersen J, Dyhre-Poulsen P, Leffers A, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen E. A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J of Physiol. 2001, 534.2: 613-623. A 2001 study, conducted by Aagaard ''et al.'', utilized MRI, ultrasonography and muscle biopsy techniques to examine the relationship between muscle architecture, contractile strength and pennation angle in the human quadriceps muscle after 14 weeks of resistance training. Upon completion of the training program, Aagaard ''et al.'' noticed a symmetrical increase in quadriceps CSA and volume, as each increased 10.2 and 10.3 percent respectively; however, these parameters increased disproportionately to quadriceps PCSA, which grew 16 percent. The rapid increase in PCSA was accompanied by a 35.5% increase in the fascicle pennation angle of the vastus lateris, one of the major quadriceps muscles, as well as a 16% increase in myofiber CSA. The increase in pennation angle in the vastus lateris resulted in an increase to the muscle’s PCSA, a measure proportional to the contractile force a pennate muscle is capable of producing. Work by Azizi ''et al.'' suggests this increase in pennation angle of the vastus lateris following resistance training generates an increase in the muscle’s AGR, a property which allows the whole muscle to contract with a higher velocity. A 2007 study, conducted by Blazevich ''et al.'', reiterated and added an extra dimension to Aagaard ''et al.''’s conclusions. Blazevich ''et al.'' examined the effect of 10-week concentric or eccentric knee extension training on architectural properties of the human quadriceps with the purpose of uncovering the mechanical stimulus involved in architecture adaptation. Both modes of exercise resulted in increased peak concentric and eccentric strength. Concentric training, however, results in higher peak concentric strength. Ultrasonography suggests vastus medialus and vastus lateris muscle fiber length increase similarly following eccentric and concentric training, with the changes occurring abruptly over the first 5 weeks of the training program. Because fiber length was independent of training type, Blazevich ''et al.'' believe distance of operation determines the optimal fiber length. This muscle property is important in determining the angle-torque relationship of a muscle. The study supported the pennation angle trends uncovered by Aagaard ''et al.''; in addition, Blazevich ''et al.'' concluded that the vastus lateris fascicle angle changes are independent of training type and modulates strongly with volume. This suggests fiber length and pennation angle modifications occur via separate mechanical stimuli, i.e. distance of operation and muscle volume respectively. Furthermore, these angle changes occur over a relatively long time scale as the pennation angle increased until the cessation of the training program at week 10. Blazevich ''et al.'' predict the increase in pennation angle seen after eccentric or concentric training allow the pennate muscle to attach more fibers to the associated aponeurosis as well as increase PCSA and AGR. Architectural modifications to pennate muscles shift the position at which the muscle operates on the force-velocity and force-length curves to regions best suited for the muscle’s function. An increase in pennation angle theoretically increases both the PCSA and AGR of a given pennate muscle, allowing the muscle to generate higher forces while operating at higher optimal speeds. An increase to fiber length would allow the muscle to function at longer lengths.


Strain and AGR heterogeneity within a muscle

A 2009 study utilizing
magnetic resonance imaging Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves ...
and
ultrasonography Ultrasound is sound waves with frequencies higher than the upper audible limit of human hearing. Ultrasound is not different from "normal" (audible) sound in its physical properties, except that humans cannot hear it. This limit varies fr ...
discovered strain and pennation angle heterogeneity within the medial gastrocnemius pennate muscle during differing modes of contraction. Parameters of fascicle location and contraction type (eccentric or passive), determined the magnitude of strain experienced by differing regions of the MG. Fascicle ends nearest the deep MG
aponeurosis An aponeurosis (; plural: ''aponeuroses'') is a type or a variant of the deep fascia, in the form of a sheet of pearly-white fibrous tissue that attaches sheet-like muscles needing a wide area of attachment. Their primary function is to join muscl ...
(Achilles tendon) showed an increase in strain from the proximal to distal portions of the MG muscle. The converse was seen in the fascicle ends adjacent to the superficial aponeurosis, which decreased in fiber strain from proximal to distal portions of the MG muscle. These trends may have been due to changes in CSA of the muscle at the proximal and distal ends of the MG, resulting in regions of high stress and strain concentration. This regional variability in strain was accompanied by a statistically significant increase in AGR and resting pennation angle from distal to proximal portions of the muscle. Furthermore, greater changes in pennation angle were visible at the proximal end of the MG. The experimental AGR values modulated positively with the pennation angle as well as the distance between the deep and superficial apopneuroses and may have been affected by regional patterns in orthogonal bulging. These trends highlight the complexity of muscle physiology, as different regions of muscles may contract with diverse contractile properties, such as strain and AGR.


References

{{Muscle tissue Muscular system