HOME

TheInfoList



OR:

Annular dark-field imaging is a method of mapping samples in a scanning transmission electron microscope (STEM). These images are formed by collecting scattered
electrons The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
with an
annular Annulus (or anulus) or annular indicates a ring- or donut-shaped area or structure. It may refer to: Human anatomy * '' Anulus fibrosus disci intervertebralis'', spinal structure * Annulus of Zinn, a.k.a. annular tendon or ''anulus tendineus co ...
dark-field detector. Conventional TEM dark-field imaging uses an objective aperture in order to only collect scattered electrons that pass through. In contrast,
STEM Stem or STEM may refer to: Plant structures * Plant stem, a plant's aboveground axis, made of vascular tissue, off which leaves and flowers hang * Stipe (botany), a stalk to support some other structure * Stipe (mycology), the stem of a mushro ...
dark-field imaging does not use an aperture to differentiate the scattered electrons from the main beam, but uses an annular detector to collect only the scattered electrons. Consequently, the contrast mechanisms are different between conventional dark field imaging and STEM dark field. An annular dark field detector collects electrons from an annulus around the beam, sampling far more scattered electrons than can pass through an objective aperture. This gives an advantage in terms of signal collection efficiency and allows the main beam to pass to an
electron energy loss spectroscopy In electron energy loss spectroscopy (EELS) a material is exposed to a beam of electrons with a known, narrow range of kinetic energies. Some of the electrons will undergo inelastic scattering, which means that they lose energy and have their pa ...
(EELS) detector, allowing both types of measurement to be performed simultaneously. Annular dark field imaging is also commonly performed in parallel with
energy-dispersive X-ray spectroscopy Energy-dispersive X-ray spectroscopy (EDS, EDX, EDXS or XEDS), sometimes called energy dispersive X-ray analysis (EDXA or EDAX) or energy dispersive X-ray microanalysis (EDXMA), is an analytical technique used for the elemental analysis or chemi ...
acquisition and can be also done in parallel to bright-field (STEM) imaging.


HAADF

High-angle annular dark-field imaging (HAADF) is an
STEM Stem or STEM may refer to: Plant structures * Plant stem, a plant's aboveground axis, made of vascular tissue, off which leaves and flowers hang * Stipe (botany), a stalk to support some other structure * Stipe (mycology), the stem of a mushro ...
technique which produces an annular dark field image formed by very high angle, incoherently scattered electrons ( Rutherford scattered from the nucleus of the atoms) — as opposed to Bragg scattered electrons. This technique is highly sensitive to variations in the atomic number of atoms in the sample ( Z-contrast images). For elements with a higher Z, more electrons are scattered at higher angles due to greater electrostatic interactions between the nucleus and electron beam. Because of this, the HAADF detector senses a greater signal from atoms with a higher Z, causing them to appear brighter in the resulting image. This high dependence on Z (with contrast approximately proportional to Z2) makes HAADF a useful way to easily identify small areas of an element with a high Z in a matrix of material with a lower Z. With this in mind, a common application for HAADF is in
heterogeneous catalysis In chemistry, heterogeneous catalysis is catalysis where the phase of catalysts differs from that of the reactants or products. The process contrasts with homogeneous catalysis where the reactants, products and catalyst exist in the same phase. ...
research, as determination of the size of metal particles and their distribution is extremely important.


Resolution

Image resolution in HAADF STEM is very high and predominately determined by the size of the electron probe, which in turn depends on the ability to correct the aberrations of the objective
lens A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements ...
, in particular the
spherical aberration In optics, spherical aberration (SA) is a type of aberration found in optical systems that have elements with spherical surfaces. Lenses and curved mirrors are prime examples, because this shape is easier to manufacture. Light rays that strik ...
. The high resolution gives it an advantage over the detection of back scattered electrons (BSE), which can also be used to detect materials with a high Z in a matrix of material with a lower Z.


Microscope Specifications

HAADF imaging typically uses electrons scattered at an angle of >5° ( Rutherford scattered electrons). For imaging on a TEM/
STEM Stem or STEM may refer to: Plant structures * Plant stem, a plant's aboveground axis, made of vascular tissue, off which leaves and flowers hang * Stipe (botany), a stalk to support some other structure * Stipe (mycology), the stem of a mushro ...
, optimum HAADF imaging is provided by TEM/STEM systems with a large maximum diffraction angle and small minimum camera length. Both of these factors allow for greater separation between Bragg and Rutherford scattered electrons. The large maximum diffraction angle is necessary to account for materials that show Bragg scattering at high angles, such as many
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macro ...
line materials. The high maximum diffraction angle allows for good separation between Bragg and Rutherford scattered electrons, therefore it is important for the maximum diffraction angle of the microscope to be as large as possible for use with HAADF. A small camera length is needed for the Rutherford scattered electrons to hit the detector, while avoiding the detection of Bragg scattered electrons. A small camera length will cause most of the Bragg scattered electrons to fall on the bright field detector with the transmitted electrons, leaving only the high angle scattered electrons to fall on the dark field detector.


See also

*
Transmission electron microscopy Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a ...
*
Scanning transmission electron microscopy A scanning transmission electron microscope (STEM) is a type of transmission electron microscope (TEM). Pronunciation is tɛmor �sti:i:ɛm As with a conventional transmission electron microscope (CTEM), images are formed by electrons passin ...
* Dark field microscopy


References

{{reflist Electron microscopy