HOME

TheInfoList



OR:

In
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic o ...
, an algebraic integer is a
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
which is
integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
over the
integers An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
. That is, an algebraic integer is a complex
root In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the su ...
of some
monic polynomial In algebra, a monic polynomial is a single-variable polynomial (that is, a univariate polynomial) in which the leading coefficient (the nonzero coefficient of highest degree) is equal to 1. Therefore, a monic polynomial has the form: :x^n+c_x^+\ ...
(a
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exampl ...
whose leading coefficient is 1) whose coefficients are integers. The set of all algebraic integers is closed under addition, subtraction and multiplication and therefore is a
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of ...
subring In mathematics, a subring of ''R'' is a subset of a ring that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and which shares the same multiplicative identity as ''R''. For those ...
of the complex numbers. The
ring of integers In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often deno ...
of a
number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a f ...
, denoted by , is the
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, thei ...
of and : it can also be characterised as the maximal
order Order, ORDER or Orders may refer to: * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of ...
of the field . Each algebraic integer belongs to the ring of integers of some number field. A number is an algebraic integer
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bic ...
the ring \mathbb
alpha Alpha (uppercase , lowercase ; grc, ἄλφα, ''álpha'', or ell, άλφα, álfa) is the first letter of the Greek alphabet. In the system of Greek numerals, it has a value of one. Alpha is derived from the Phoenician letter aleph , whi ...
/math> is finitely generated as an
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
, which is to say, as a \mathbb-
module Module, modular and modularity may refer to the concept of modularity. They may also refer to: Computing and engineering * Modular design, the engineering discipline of designing complex devices using separately designed sub-components * Modul ...
.


Definitions

The following are equivalent definitions of an algebraic integer. Let be a
number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a f ...
(i.e., a finite extension of \mathbb, the field of
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
s), in other words, K = \Q(\theta) for some
algebraic number An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of th ...
\theta \in \Complex by the primitive element theorem. * is an algebraic integer if there exists a monic polynomial f(x) \in \Z /math> such that . * is an algebraic integer if the minimal monic polynomial of over \mathbb is in \Z /math>. * is an algebraic integer if \Z
alpha Alpha (uppercase , lowercase ; grc, ἄλφα, ''álpha'', or ell, άλφα, álfa) is the first letter of the Greek alphabet. In the system of Greek numerals, it has a value of one. Alpha is derived from the Phoenician letter aleph , whi ...
/math> is a finitely generated \Z-module. * is an algebraic integer if there exists a non-zero finitely generated \Z-
submodule In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the mo ...
M \subset \Complex such that . Algebraic integers are a special case of integral elements of a ring extension. In particular, an algebraic integer is an integral element of a finite extension K / \mathbb.


Examples

* The only algebraic integers which are found in the set of rational numbers are the integers. In other words, the intersection of \mathbb and is exactly \mathbb. The rational number is not an algebraic integer unless
divides In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible b ...
. Note that the leading coefficient of the polynomial is the integer . As another special case, the
square root In mathematics, a square root of a number is a number such that ; in other words, a number whose '' square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . ...
\sqrt of a nonnegative integer is an algebraic integer, but is
irrational Irrationality is cognition, thinking, talking, or acting without inclusion of rationality. It is more specifically described as an action or opinion given through inadequate use of reason, or through emotional distress or cognitive deficiency. T ...
unless is a perfect square. *If is a
square-free integer In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, is square-f ...
then the
extension Extension, extend or extended may refer to: Mathematics Logic or set theory * Axiom of extensionality * Extensible cardinal * Extension (model theory) * Extension (predicate logic), the set of tuples of values that satisfy the predicate * Ext ...
K = \mathbb(\sqrt\,) is a quadratic field of rational numbers. The ring of algebraic integers contains \sqrt since this is a root of the monic polynomial . Moreover, if , then the element \frac(1 + \sqrt\,) is also an algebraic integer. It satisfies the polynomial where the
constant term In mathematics, a constant term is a term in an algebraic expression that does not contain any variables and therefore is constant. For example, in the quadratic polynomial :x^2 + 2x + 3,\ the 3 is a constant term. After like terms are com ...
is an integer. The full ring of integers is generated by \sqrt or \frac(1 + \sqrt\,) respectively. See Quadratic integer for more. *The ring of integers of the field F = \Q
alpha Alpha (uppercase , lowercase ; grc, ἄλφα, ''álpha'', or ell, άλφα, álfa) is the first letter of the Greek alphabet. In the system of Greek numerals, it has a value of one. Alpha is derived from the Phoenician letter aleph , whi ...
/math>, , has the following integral basis, writing for two square-free
coprime In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivale ...
integers and : \begin 1, \alpha, \dfrac & m \equiv \pm 1 \bmod 9 \\ 1, \alpha, \dfrack & \text \end * If is a primitive th
root of unity In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important i ...
, then the ring of integers of the
cyclotomic field In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of ...
\Q(\zeta_n) is precisely \Z
zeta_n Zeta (, ; uppercase Ζ, lowercase ζ; grc, ζῆτα, el, ζήτα, label=Demotic Greek, classical or ''zē̂ta''; ''zíta'') is the sixth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 7. It was derived fr ...
/math>. * If is an algebraic integer then is another algebraic integer. A polynomial for is obtained by substituting in the polynomial for .


Non-example

* If is a primitive polynomial which has integer coefficients but is not monic, and is irreducible over \mathbb, then none of the roots of are algebraic integers (but ''are''
algebraic number An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of th ...
s). Here ''primitive'' is used in the sense that the
highest common factor In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers ''x'', ''y'', the greatest common divisor of ''x'' and ''y'' ...
of the coefficients of is 1; this is weaker than requiring the coefficients to be pairwise relatively prime.


Facts

* The sum, difference and product of two algebraic integers is an algebraic integer. In general their quotient is not. The monic polynomial involved is generally of higher degree than those of the original algebraic integers, and can be found by taking
resultant In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients, which is equal to zero if and only if the polynomials have a common root (possibly in a field extension), or, equivalently, a common factor (ov ...
s and factoring. For example, if , and , then eliminating and from and the polynomials satisfied by and using the resultant gives , which is irreducible, and is the monic equation satisfied by the product. (To see that the is a root of the -resultant of and , one might use the fact that the resultant is contained in the
ideal Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considered ...
generated by its two input polynomials.) * Any number constructible out of the integers with roots, addition, and multiplication is therefore an algebraic integer; but not all algebraic integers are so constructible: in a naïve sense, most roots of irreducible
quintic In algebra, a quintic function is a function of the form :g(x)=ax^5+bx^4+cx^3+dx^2+ex+f,\, where , , , , and are members of a field, typically the rational numbers, the real numbers or the complex numbers, and is nonzero. In other words, a ...
s are not. This is the Abel–Ruffini theorem. * Every root of a monic polynomial whose coefficients are algebraic integers is itself an algebraic integer. In other words, the algebraic integers form a ring which is integrally closed in any of its extensions. * The ring of algebraic integers is a Bézout domain, as a consequence of the
principal ideal theorem In mathematics, the principal ideal theorem of class field theory, a branch of algebraic number theory, says that extending ideals gives a mapping on the class group of an algebraic number field to the class group of its Hilbert class field, wh ...
. * If the monic polynomial associated with an algebraic integer has constant term 1 or −1, then the
reciprocal Reciprocal may refer to: In mathematics * Multiplicative inverse, in mathematics, the number 1/''x'', which multiplied by ''x'' gives the product 1, also known as a ''reciprocal'' * Reciprocal polynomial, a polynomial obtained from another pol ...
of that algebraic integer is also an algebraic integer, and is a
unit Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (a ...
, an element of the
group of units In algebra, a unit of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that vu = uv = 1, where is the multiplicative identity; the element is unique for thi ...
of the ring of algebraic integers. * Every algebraic number can be written as the ratio of an algebraic integer to a non-zero algebraic integer. In fact, the denominator can always be chosen to be a positive integer. Specifically, if is an algebraic number that is a root of the polynomial with integer coefficients and leading term for then is the promised ratio. In particular, is an algebraic integer because it is a root of , which is a monic polynomial in with integer coefficients.


See also

* Integral element * Gaussian integer *
Eisenstein integer In mathematics, the Eisenstein integers (named after Gotthold Eisenstein), occasionally also known as Eulerian integers (after Leonhard Euler), are the complex numbers of the form :z = a + b\omega , where and are integers and :\omega = \f ...
*
Root of unity In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important i ...
* Dirichlet's unit theorem * Fundamental units


References

* {{Algebraic numbers Algebraic numbers Integers