HOME

TheInfoList



OR:

According to
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
,
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, a ...
s and
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and b ...
s can only hold certain defined quantities of
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of ...
, or exist in specific states. When such quanta of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
are emitted or absorbed by an atom or molecule, energy of the radiation changes the state of the atom or molecule from an initial state to a final state. An absorption band is a range of
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
s,
frequencies Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is e ...
or energies in the
electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging fro ...
which are characteristic of a particular transition from initial to final state in a substance.


Overview

According to
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
,
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, a ...
s and
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and b ...
s can only hold certain defined quantities of
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of ...
, or exist in specific states. When
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
is absorbed by an atom or molecule, the energy of the radiation changes the state of the atom or molecule from an initial state to a final state. The number of states in a specific energy range is discrete for gaseous or diluted systems, with discrete
energy level A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The t ...
s. Condensed systems, like liquids or solids, have a continuous
density of states In solid state physics and condensed matter physics, the density of states (DOS) of a system describes the number of modes per unit frequency range. The density of states is defined as D(E) = N(E)/V , where N(E)\delta E is the number of states i ...
distribution and often possess continuous energy bands. In order for a substance to change its energy it must do so in a series of "steps" by the absorption of a
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
. This absorption process can move a particle, like an electron, from an occupied state to an empty or unoccupied state. It can also move a whole vibrating or rotating system, like a molecule, from one vibrational or rotational state to another or it can create a
quasiparticle In physics, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum. For exa ...
like a
phonon In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechani ...
or a
plasmon In physics, a plasmon is a quantum of plasma oscillation. Just as light (an optical oscillation) consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantiz ...
in a solid.


Electromagnetic transitions

When a photon is absorbed, the electromagnetic field of the photon disappears as it initiates a change in the state of the system that absorbs the photon.
Energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of ...
,
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass ...
,
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
, magnetic dipole moment and electric dipole moment are transported from the photon to the system. Because there are
conservation law In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of energy, conservation of linear momentum, c ...
s, that have to be satisfied, the transition has to meet a series of constraints. This results in a series of
selection rules In physics and chemistry, a selection rule, or transition rule, formally constrains the possible transitions of a system from one quantum state to another. Selection rules have been derived for electromagnetic transitions in molecules, in atoms, i ...
. It is not possible to make any transition that lies within the energy or frequency range that is observed. The strength of an electromagnetic absorption process is mainly determined by two factors. First it is important to realize that transitions that only change the magnetic dipole moment of the system are much weaker than transitions that change the electric dipole moment and that transitions to higher order moments like
quadrupole A quadrupole or quadrapole is one of a sequence of configurations of things like electric charge or current, or gravitational mass that can exist in ideal form, but it is usually just part of a multipole expansion of a more complex structure refl ...
transitions are weaker than dipole transitions. Second, not all transitions have the same transition matrix element,
absorption coefficient The linear attenuation coefficient, attenuation coefficient, or narrow-beam attenuation coefficient characterizes how easily a volume of material can be penetrated by a beam of light, sound, particles, or other energy or matter. A coefficient valu ...
or
oscillator strength In spectroscopy, oscillator strength is a dimensionless quantity that expresses the probability of absorption or emission of electromagnetic radiation in transitions between energy levels of an atom or molecule. For example, if an emissive state ha ...
. For some types of bands or spectroscopic disciplines temperature and
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic b ...
plays an important role. For (far) infrared,
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
and
radio frequency Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the up ...
ranges the temperature dependent occupation numbers of states and the difference between Bose-Einstein statistics and Fermi-Dirac statistics determines the intensity of observed absorptions. For other energy ranges thermal motion effects, like
Doppler broadening In atomic physics, Doppler broadening is broadening of spectral lines due to the Doppler effect caused by a distribution of velocities of atoms or molecules. Different velocities of the emitting (or absorbing) particles result in different Do ...
may determine the
linewidth A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to ident ...
.


Band and line shape

A wide variety of absorption band and line shapes exist, and the analysis of the band or line shape can be used to determine information about the system that causes it. In many cases it is convenient to assume that a narrow spectral line is a Lorentzian or
Gaussian Carl Friedrich Gauss (1777–1855) is the eponym of all of the topics listed below. There are over 100 topics all named after this German mathematician and scientist, all in the fields of mathematics, physics, and astronomy. The English eponym ...
, depending respectively on the decay mechanism or temperature effects like
Doppler broadening In atomic physics, Doppler broadening is broadening of spectral lines due to the Doppler effect caused by a distribution of velocities of atoms or molecules. Different velocities of the emitting (or absorbing) particles result in different Do ...
. Analysis of the
spectral density The power spectrum S_(f) of a time series x(t) describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies ...
and the intensities, width and shape of
spectral line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to ident ...
s sometimes can yield a lot of information about the observed system like it is done with Mössbauer spectra. In systems with a very large number of states like
macromolecule A macromolecule is a very large molecule important to biophysical processes, such as a protein or nucleic acid. It is composed of thousands of covalently bonded atoms. Many macromolecules are polymers of smaller molecules called monomers. The ...
s and large
conjugated systems Conjugation or conjugate may refer to: Linguistics *Grammatical conjugation, the modification of a verb from its basic form *Emotive conjugation or Russell's conjugation, the use of loaded language Mathematics *Complex conjugation, the change o ...
the separate energy levels can't always be distinguished in an absorption spectrum. If the line broadening mechanism is known and the shape of then spectral density is clearly visible in the spectrum, it is possible to get the desired data. Sometimes it is enough to know the lower or upper limits of the band or its position for an analysis. For
condensed matter Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the su ...
and
solid Solid is one of the four fundamental states of matter (the others being liquid, gas, and plasma). The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structur ...
s the shape of absorption bands are often determined by transitions between states in their continuous
density of states In solid state physics and condensed matter physics, the density of states (DOS) of a system describes the number of modes per unit frequency range. The density of states is defined as D(E) = N(E)/V , where N(E)\delta E is the number of states i ...
distributions. For
crystals A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
the
electronic band structure In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called '' band gaps'' or ...
determines the density of states. In
fluid In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
s,
glass Glass is a non- crystalline, often transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling (quenchin ...
es and
amorphous solid In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid, glassy solid) is a solid that lacks the long-range order that is characteristic of a crystal. Etymology The term comes from the Greek ''a'' (" ...
s there is no long range
correlation In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistic ...
and the
dispersion relation In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given t ...
s are isotropic. This makes density of states calculations of absorption band shapes easier. For
charge-transfer complex In chemistry, a charge-transfer (CT) complex or electron-donor-acceptor complex describes a type of supramolecular assembly of two or more molecules or ions. The assembly consists of two molecules that self-attract through electrostatic forc ...
es and
conjugated system In theoretical chemistry, a conjugated system is a system of connected p-orbitals with delocalized electrons in a molecule, which in general lowers the overall energy of the molecule and increases stability. It is conventionally represented ...
s the band width is determined by a variety of factors.


Types


Electronic transitions

Electromagnetic transitions in atoms, molecules and condensed matter mainly take place at energies corresponding to the UV and visible part of the spectrum. Core electrons in atoms, and a lot of other phenomena, are observed with different brands of XAS in the
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
energy range. Electromagnetic transitions in
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
, as observed in
Mössbauer spectroscopy Mössbauer spectroscopy is a spectroscopic technique based on the Mössbauer effect. This effect, discovered by Rudolf Mössbauer (sometimes written "Moessbauer", German: "Mößbauer") in 1958, consists of the nearly recoil-free emission and abs ...
, take place in the
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
part of the spectrum. The main factors that cause broadening of the spectral line into an absorption band of a molecular solid are the distributions of vibrational and rotational energies of the molecules in the sample (and also those of their excited states). In solid crystals the shape of absorption bands are determined by the
density of states In solid state physics and condensed matter physics, the density of states (DOS) of a system describes the number of modes per unit frequency range. The density of states is defined as D(E) = N(E)/V , where N(E)\delta E is the number of states i ...
of initial and final states of electronic states or lattice vibrations, called
phonon In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechani ...
s, in the
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric pattern ...
. In gas phase spectroscopy, the
fine structure In atomic physics, the fine structure describes the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the non-relativistic Schrödinger equation. It was first measured precisely for the hydrogen atom ...
afforded by these factors can be discerned, but in solution-state spectroscopy, the differences in molecular micro environments further broaden the structure to give smooth bands. Electronic transition bands of molecules may be from tens to several hundred nanometers in breadth.


Vibrational transitions

Vibrational transition A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 1013 Hz to approximately 1014 H ...
s and optical phonon transitions take place in the infrared part of the spectrum, at wavelengths of around 1-30 micrometres.


Rotational transitions

Rotational transitions take place in the far infrared and microwave regions.


Other transitions

Absorption bands in the radio frequency range are found in
NMR spectroscopy Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. The sample is placed in a magnetic fi ...
. The frequency ranges and intensities are determined by the magnetic moment of the nuclei that are observed, the applied magnetic field and temperature occupation number differences of the magnetic states.


Applications

Materials with broad absorption bands are being applied in
pigment A pigment is a colored material that is completely or nearly insoluble in water. In contrast, dyes are typically soluble, at least at some stage in their use. Generally dyes are often organic compounds whereas pigments are often inorganic compou ...
s,
dye A dye is a colored substance that chemically bonds to the substrate to which it is being applied. This distinguishes dyes from pigments which do not chemically bind to the material they color. Dye is generally applied in an aqueous solution and ...
s and optical filters.
Titanium dioxide Titanium dioxide, also known as titanium(IV) oxide or titania , is the inorganic compound with the chemical formula . When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI 77891. It is a white solid that is insolu ...
,
zinc oxide Zinc oxide is an inorganic compound with the formula . It is a white powder that is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, food supplements, rubbers, plastics, ceramics, glass, cement ...
and
chromophore A chromophore is the part of a molecule responsible for its color. The color that is seen by our eyes is the one not absorbed by the reflecting object within a certain wavelength spectrum of visible light. The chromophore is a region in the mo ...
s are applied as UV absorbers and reflectors in
sunscreen Sunscreen, also known as sunblock or sun cream, is a photoprotective topical product for the skin that mainly absorbs, or to a much lesser extent reflects, some of the sun's ultraviolet (UV) radiation and thus helps protect against sunbur ...
.


Absorption bands of interest to the atmospheric physicist

In
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
: * the Hopfield bands, very strong, between about 67 and 100 nanometres in the ultraviolet (named after John J. Hopfield); * a diffuse system between 101.9 and 130 nanometres; * the Schumann–Runge continuum, very strong, between 135 and 176 nanometres; * the Schumann–Runge bands between 176 and 192.6 nanometres (named for
Victor Schumann Victor Schumann (21 December 1841 – 1 September 1913) was a physicist and spectroscopist who in 1893 discovered the vacuum ultraviolet. Schumann wished to study the "Extreme Ultraviolet" region. For this, he used a prism and lenses in f ...
and
Carl Runge Carl David Tolmé Runge (; 30 August 1856 – 3 January 1927) was a German mathematician, physicist, and spectroscopist. He was co-developer and co- eponym of the Runge–Kutta method (German pronunciation: ), in the field of what is today know ...
); * the Herzberg bands between 240 and 260 nanometres (named after
Gerhard Herzberg Gerhard Heinrich Friedrich Otto Julius Herzberg, (; December 25, 1904 – March 3, 1999) was a German-Canadian pioneering physicist and physical chemist, who won the Nobel Prize for Chemistry in 1971, "for his contributions to the knowledge o ...
); * the atmospheric bands between 538 and 771 nanometres in the visible spectrum; including the oxygen δ (~580 nm), γ (~629 nm), B (~688 nm), and A-band (~759-771 nm) * a system in the infrared at about 1000 nanometres.K.M Smith, D.A Newnham. Near-infrared absorption spectroscopy of oxygen and nitrogen gas mixtures. doi:10.1016/S0009-2614(99)00584-9 In
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the l ...
: * the
Hartley bands Hartley may refer to: Places Australia *Hartley, New South Wales *Hartley, South Australia **Electoral district of Hartley, a state electoral district Canada *Hartley Bay, British Columbia United Kingdom *Hartley, Cumbria *Hartley, Plymou ...
between 200 and 300 nanometres in the ultraviolet, with a very intense maximum absorption at 255 nanometres (named after
Walter Noel Hartley Sir Walter Noel Hartley FRS FRSE DSc (1845-11 September 1913) was a British chemist. He was a pioneer of spectroscopy, and the first person to establish a relationship between the wavelengths of spectral lines of the elements and their position ...
); * the
Huggins bands Huggins may refer to: People *Albert Huggins (born 1997), American football player *Bob Huggins (born 1953), American college basketball coach * Charles Brenton Huggins (1901–1997), Canadian-born American physician, physiologist, and cancer resea ...
, weak absorption between 320 and 360 nanometres (named after Sir
William Huggins Sir William Huggins (7 February 1824 – 12 May 1910) was an English astronomer best known for his pioneering work in astronomical spectroscopy together with his wife, Margaret. Biography William Huggins was born at Cornhill, Middlesex, in ...
); * the
Chappuis bands Chappuis absorption () refers to the absorption (electromagnetic radiation), absorption of electromagnetic radiation by ozone, which is especially noticeable in the ozone layer, which absorbs a small part of sunlight in the visible spectrum, visib ...
(sometimes misspelled "Chappius"), a weak diffuse system between 375 and 650 nanometres in the visible spectrum (named after
J. Chappuis ''J. The Jewish News of Northern California'', formerly known as ''Jweekly'', is a weekly print newspaper in Northern California, with its online edition updated daily. It is owned and operated by San Francisco Jewish Community Publications In ...
); and * the
Wulf bands ''Wulf'' (Common Germanic "wolf") was one of the most prolific elements in early Germanic names. It could figure as the first element in dithematic names, as in ''Wulfstan (disambiguation), Wulfstan'', but especially as second element, in the fo ...
in the infrared beyond 700 nm, centered at 4,700, 9,600 and 14,100 nanometres, the latter being the most intense (named after Oliver R. Wulf). In
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
: * The Lyman–Birge–Hopfield bands, sometimes known as the Birge–Hopfield bands, in the far ultraviolet: 140– 170 nm (named after Theodore Lyman,
Raymond T. Birge Raymond Thayer Birge (March 13, 1887 – March 22, 1980) was an American physicist. Career Born in Brooklyn, New York, into an academic scientific family, Birge obtained his doctorate from the University of Wisconsin in 1913. In the same year h ...
, and John J. Hopfield)


See also

*
Franck–Condon principle The Franck–Condon principle (named for James Franck and Edward Condon) is a rule in spectroscopy and quantum chemistry that explains the intensity of vibronic transitions (the simultaneous changes in electronic and vibrational energy levels o ...
*
Spectroscopy Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter ...
*
Spectral line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to ident ...


References

{{DEFAULTSORT:Absorption Band Spectroscopy