Zermelo's theorem (game theory)
   HOME

TheInfoList



OR:

In
game theory Game theory is the study of mathematical models of strategic interactions. It has applications in many fields of social science, and is used extensively in economics, logic, systems science and computer science. Initially, game theory addressed ...
, Zermelo's theorem is a theorem about finite two-person games of
perfect information Perfect information is a concept in game theory and economics that describes a situation where all players in a game or all participants in a market have knowledge of all relevant information in the system. This is different than complete informat ...
in which the players move alternately and in which chance does not affect the decision making process. It says that if the game cannot end in a draw, then one of the two players must have a winning strategy (i.e. can force a win). An alternate statement is that for a game meeting all of these conditions except the condition that a draw is now possible, then either the first-player can force a win, or the second-player can force a win, or both players can at least force a draw. The theorem is named after
Ernst Zermelo Ernst Friedrich Ferdinand Zermelo (; ; 27 July 187121 May 1953) was a German logician and mathematician, whose work has major implications for the foundations of mathematics. He is known for his role in developing Zermelo–Fraenkel set theory, Z ...
, a German mathematician and logician, who proved the theorem for the example game of
chess Chess is a board game for two players. It is an abstract strategy game that involves Perfect information, no hidden information and no elements of game of chance, chance. It is played on a square chessboard, board consisting of 64 squares arran ...
in 1913.


Example

Zermelo's theorem can be applied to all finite-stage two-player games with complete information and alternating moves. The game must satisfy the following criteria: there are two players in the game; the game is of perfect information; the board game is finite; the two players can take alternate turns; and there is no chance element present. Zermelo has stated that there are many games of this type; however his theorem has been applied mostly to the game chess. When applied to
chess Chess is a board game for two players. It is an abstract strategy game that involves Perfect information, no hidden information and no elements of game of chance, chance. It is played on a square chessboard, board consisting of 64 squares arran ...
, Zermelo's theorem states "either
White White is the lightest color and is achromatic (having no chroma). It is the color of objects such as snow, chalk, and milk, and is the opposite of black. White objects fully (or almost fully) reflect and scatter all the visible wa ...
can force a win, or
Black Black is a color that results from the absence or complete absorption of visible light. It is an achromatic color, without chroma, like white and grey. It is often used symbolically or figuratively to represent darkness.Eva Heller, ''P ...
can force a win, or both sides can force at least a draw". Zermelo's algorithm is a cornerstone algorithm in game-theory; however, it can also be applied in areas outside of finite games. Apart from chess, Zermelo's theorem is applied across all areas of
computer science Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, ...
. In particular, it is applied in
model checking In computer science, model checking or property checking is a method for checking whether a finite-state model of a system meets a given specification (also known as correctness). This is typically associated with hardware or software syst ...
and value interaction.


Conclusions of Zermelo's theorem

Zermelo's work shows that in two-person zero-sum games with perfect information, if a player is in a winning position, then that player can always force a win no matter what strategy the other player may employ. Furthermore, and as a consequence, if a player is in a winning position, it will never require more moves than there are positions in the game (with a position defined as position of pieces as well as the player next to move).


Publication history

In 1912, during the Fifth
International Congress of Mathematicians The International Congress of Mathematicians (ICM) is the largest conference for the topic of mathematics. It meets once every four years, hosted by the International Mathematical Union (IMU). The Fields Medals, the IMU Abacus Medal (known before ...
in Cambridge, Ernst Zermelo gave two talks. The first one covered axiomatic and genetic methods in the foundation of mathematical disciplines, and the second speech was on the game of chess. The second speech prompted Zermelo to write a paper on game theory. Being an avid chess player, Zermelo was concerned with application of
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
to the game of chess. Zermelo's original paper describing the theorem, ''Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels'', was published in German in 1913. It can be considered as the first known paper on game theory. Ulrich Schwalbe and Paul Walker translated Zermelo's paper into English in 1997 and published the translation in the appendix to ''Zermelo and the Early History of Game Theory''.


Details

Zermelo considers the class of two-person games without chance, where players have strictly opposing interests and where only a finite number of positions are possible. Although in the game only finitely many positions are possible, Zermelo allows infinite sequences of moves since he does not consider stopping rules. Thus, he allows for the possibility of infinite games. Then he addresses two problems: # What does it mean for a player to be in a 'winning' position and is it possible to define this in an objective mathematical manner? # If the player is in a winning position, can the number of moves needed to force the win be determined? To answer the first question, Zermelo states that a necessary and sufficient condition is the nonemptyness of a certain set, containing all possible sequences of moves such that a player wins independently of how the other player plays. But should this set be empty, the best a player could achieve would be a draw. So Zermelo defines another set containing all possible sequences of moves such that a player can postpone his loss for an infinite number of moves, which implies a draw. This set may also be empty, i.e., the player can avoid his loss for only finitely many moves if his opponent plays correctly. But this is equivalent to the opponent being able to force a win. This is the basis for all modern versions of Zermelo's theorem. About the second question, Zermelo claimed that it will never take more moves than there are positions in the game. His proof is a
proof by contradiction In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical pr ...
: Assume that a player can win in a number of moves larger than the number of positions. By the
pigeonhole principle In mathematics, the pigeonhole principle states that if items are put into containers, with , then at least one container must contain more than one item. For example, of three gloves, at least two must be right-handed or at least two must be l ...
, at least one winning position must have appeared twice. So the player could have played at the first occurrence in the same way as he does at the second and thus could have won in fewer moves than there are positions. In 1927, a Hungarian mathematician Dénes Kőnig revised Zermelo's paper and pointed out some gaps in the original work. First of all, Kőnig argues that Zermelo did not prove that a player, for example White, who is in a winning position is always able to force a win by making moves smaller than the number of positions in the game. Zermelo argued that White can change its behaviour at the first possibility of any related winning position and win without repetition. However, Kőnig maintains that this argument is not correct as it is not enough to reduce the number of moves in a single game below the number of possible positions. Thus, Zermelo claimed, but did not show, that a winning player can always win without repetition. The second objection by Kőnig is that the strategy 'do the same at the first occurrence of a position as at the second and thus win in fewer moves' cannot be made if it is Black's turn to move in this position. However, this argument is not correct because Zermelo considered two positions different whether Black or White makes a move.


Zermelo's theorem and backward induction

It has been believed that Zermelo used backward induction as his method of proof. However, recent research on the Zermelo's theorem demonstrates that backward induction was not used to explain the strategy behind chess. Contrary to the popular belief, chess is not a finite game without at least one of the fifty move rule or
threefold repetition In chess, the threefold repetition rule states that a player may claim a draw if the same position occurs three times during the game. The rule is also known as repetition of position and, in the USCF rules, as triple occurrence of position.Artic ...
rule. Strictly speaking, chess is an infinite game therefore backward induction does not provide the minmax theorem in this game. Backward induction is a process of reasoning backward in time. It is used to analyse and solve extensive form games of perfect information. This method analyses the game starting at the end, and then works backwards to reach the beginning. In the process, backward induction determines the best strategy for the player that made the last move. Then the ultimate strategy is determined for the next-to last moving player of the game. The process is repeated again determining the best action for every point in the game has been found. Therefore, backward induction determines the
Nash equilibrium In game theory, the Nash equilibrium is the most commonly used solution concept for non-cooperative games. A Nash equilibrium is a situation where no player could gain by changing their own strategy (holding all other players' strategies fixed) ...
of every subgame in the original game. There is a number of reasons as to why backward induction is not present in the Zermelo's original paper: Firstly, a recent study by Schwalbe and Walker (2001) demonstrated that Zermelo's paper contained basic idea of backward induction; however Zermelo did not make a formal statement on the theorem. Zermelo's original method was the idea of non-repetition. The first mention of backward induction was provided by László Kalmár in 1928. Kalmár generalised the work of Zermelo and Kőnig in his paper "On the Theory of Abstract Games". Kalmár was concerned with the question: "Given a winning position, how quickly can a win be forced?". His paper showed that winning without repetition is possible given that a player is a winning position. Kalmár's proof of non-repetition was proof by backward induction. In his paper, Kalmár introduced the concept of subgame and tactic. Kalmár's central argument was that a position can be a winning position only if a player can win in a finite number of moves. Also, a winning position for player A is always a losing position for player B.


References


External links


Original Paper
in German) * Ulrich Schwalbe, Paul Walker, ''Zermelo and the Early History of Game Theory'', Games and Economic Behavior, Volume 34, 2001, 123-137
online
{{Game theory Game theory History of mathematics Mathematical theorems