HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a zonohedron is a
convex polyhedron A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the wo ...
that is
centrally symmetric In geometry, a point reflection (point inversion, central inversion, or inversion through a point) is a type of isometry of Euclidean space. An object that is invariant under a point reflection is said to possess point symmetry; if it is invari ...
, every face of which is a
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed ''polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two toge ...
that is centrally symmetric (a
zonogon In geometry, a zonogon is a centrally-symmetric, convex polygon. Equivalently, it is a convex polygon whose sides can be grouped into parallel pairs with equal lengths and opposite orientations. Examples A regular polygon is a zonogon if and ...
). Any zonohedron may equivalently be described as the
Minkowski sum In geometry, the Minkowski sum (also known as dilation) of two sets of position vectors ''A'' and ''B'' in Euclidean space is formed by adding each vector in ''A'' to each vector in ''B'', i.e., the set : A + B = \. Analogously, the Minkowski ...
of a set of line segments in three-dimensional space, or as the three-dimensional
projection Projection, projections or projective may refer to: Physics * Projection (physics), the action/process of light, heat, or sound reflecting from a surface to another in a different direction * The display of images by a projector Optics, graphic ...
of a
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, ...
. Zonohedra were originally defined and studied by E. S. Fedorov, a Russian crystallographer. More generally, in any dimension, the Minkowski sum of line segments forms a
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
known as a zonotope.


Zonohedra that tile space

The original motivation for studying zonohedra is that the
Voronoi diagram In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. In the simplest case, these objects are just finitely many points in the plane (called seeds, sites, or generators). For each seed ...
of any
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an orna ...
forms a
convex uniform honeycomb In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells. Twenty-eight such honeycombs are known: * the familiar cubic honeycomb and 7 tr ...
in which the cells are zonohedra. Any zonohedron formed in this way can
tessellate A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of ...
3-dimensional space and is called a primary
parallelohedron In geometry, a parallelohedron is a polyhedron that can be translated without rotations in 3-dimensional Euclidean space to fill space with a honeycomb in which all copies of the polyhedron meet face-to-face. There are five types of parallelohedr ...
. Each primary parallelohedron is combinatorially equivalent to one of five types: the
rhombohedron In geometry, a rhombohedron (also called a rhombic hexahedron or, inaccurately, a rhomboid) is a three-dimensional figure with six faces which are rhombi. It is a special case of a parallelepiped where all edges are the same length. It can be us ...
(including the
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only r ...
),
hexagonal prism In geometry, the hexagonal prism is a prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 faces, 18 edges, and 12 vertices.. Since it has 8 faces, it is an octahedron. However, the term ''octahedron'' is primarily used ...
,
truncated octahedron In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular hexagon, hexagons and 6 Squa ...
,
rhombic dodecahedron In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron. Properties The rhombic dodecahedro ...
, and the
rhombo-hexagonal dodecahedron In geometry, the elongated dodecahedron, extended rhombic dodecahedron, rhombo-hexagonal dodecahedron or hexarhombic dodecahedron is a convex dodecahedron with 8 rhombic and 4 hexagonal faces. The hexagons can be made equilateral, or regular de ...
.


Zonohedra from Minkowski sums

Let \ be a collection of three-dimensional
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
s. With each vector v_i we may associate a
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
\. The
Minkowski sum In geometry, the Minkowski sum (also known as dilation) of two sets of position vectors ''A'' and ''B'' in Euclidean space is formed by adding each vector in ''A'' to each vector in ''B'', i.e., the set : A + B = \. Analogously, the Minkowski ...
\ forms a zonohedron, and all zonohedra that contain the origin have this form. The vectors from which the zonohedron is formed are called its generators. This characterization allows the definition of zonohedra to be generalized to higher dimensions, giving zonotopes. Each edge in a zonohedron is parallel to at least one of the generators, and has length equal to the sum of the lengths of the generators to which it is parallel. Therefore, by choosing a set of generators with no parallel pairs of vectors, and by setting all vector lengths equal, we may form an
equilateral In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each oth ...
version of any combinatorial type of zonohedron. By choosing sets of vectors with high degrees of symmetry, we can form in this way, zonohedra with at least as much symmetry. For instance, generators equally spaced around the equator of a sphere, together with another pair of generators through the poles of the sphere, form zonohedra in the form of
prism Prism usually refers to: * Prism (optics), a transparent optical component with flat surfaces that refract light * Prism (geometry), a kind of polyhedron Prism may also refer to: Science and mathematics * Prism (geology), a type of sedimentary ...
over regular 2k-gons: the
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only r ...
,
hexagonal prism In geometry, the hexagonal prism is a prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 faces, 18 edges, and 12 vertices.. Since it has 8 faces, it is an octahedron. However, the term ''octahedron'' is primarily used ...
,
octagonal prism In geometry, the octagonal prism is the sixth in an infinite set of prisms, formed by rectangular sides and two regular octagon caps. If faces are all regular, it is a semiregular polyhedron. Symmetry Images The octagonal prism can also ...
,
decagonal prism In geometry, the decagonal prism is the eighth in the infinite set of prisms, formed by ten square side faces and two regular decagon caps. With twelve faces, it is one of many nonregular dodecahedra. The decagonal prism has 12 faces, 30 edges, an ...
,
dodecagonal prism In geometry, the dodecagonal prism is the tenth in an infinite set of prisms, formed by square sides and two regular dodecagon caps. If faces are all regular, it is a uniform polyhedron. Use It is used in the construction of two prismatic uni ...
, etc. Generators parallel to the edges of an octahedron form a
truncated octahedron In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular hexagon, hexagons and 6 Squa ...
, and generators parallel to the long diagonals of a cube form a
rhombic dodecahedron In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron. Properties The rhombic dodecahedro ...
. The Minkowski sum of any two zonohedra is another zonohedron, generated by the union of the generators of the two given zonohedra. Thus, the Minkowski sum of a cube and a truncated octahedron forms the
truncated cuboctahedron In geometry, the truncated cuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its fac ...
, while the Minkowski sum of the cube and the rhombic dodecahedron forms the
truncated rhombic dodecahedron In geometry, chamfering or edge-truncation is a topological operator that modifies one polyhedron into another. It is similar to Expansion (geometry), expansion, moving Face (geometry), faces apart and outward, but also maintains the original ...
. Both of these zonohedra are simple (three faces meet at each vertex), as is the truncated small rhombicuboctahedron formed from the Minkowski sum of the cube, truncated octahedron, and rhombic dodecahedron.


Zonohedra from arrangements

The
Gauss map In differential geometry, the Gauss map (named after Carl F. Gauss) maps a surface in Euclidean space R3 to the unit sphere ''S''2. Namely, given a surface ''X'' lying in R3, the Gauss map is a continuous map ''N'': ''X'' → ''S''2 such that ' ...
of any convex polyhedron maps each face of the polygon to a point on the unit sphere, and maps each edge of the polygon separating a pair of faces to a
great circle In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point. Any arc of a great circle is a geodesic of the sphere, so that great circles in spherical geomet ...
arc connecting the corresponding two points. In the case of a zonohedron, the edges surrounding each face can be grouped into pairs of parallel edges, and when translated via the Gauss map any such pair becomes a pair of contiguous segments on the same great circle. Thus, the edges of the zonohedron can be grouped into zones of parallel edges, which correspond to the segments of a common great circle on the Gauss map, and the 1-
skeleton A skeleton is the structural frame that supports the body of an animal. There are several types of skeletons, including the exoskeleton, which is the stable outer shell of an organism, the endoskeleton, which forms the support structure inside ...
of the zonohedron can be viewed as the planar dual graph to an arrangement of great circles on the sphere. Conversely any arrangement of great circles may be formed from the Gauss map of a zonohedron generated by vectors perpendicular to the planes through the circles. Any simple zonohedron corresponds in this way to a simplicial arrangement, one in which each face is a triangle. Simplicial arrangements of great circles correspond via central projection to simplicial arrangements of lines in the
projective plane In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that do ...
. There are three known infinite families of simplicial arrangements, one of which leads to the prisms when converted to zonohedra, and the other two of which correspond to additional infinite families of simple zonohedra. There are also many sporadic examples that do not fit into these three families. It follows from the correspondence between zonohedra and arrangements, and from the
Sylvester–Gallai theorem The Sylvester–Gallai theorem in geometry states that every finite set of points in the Euclidean plane has a line that passes through exactly two of the points or a line that passes through all of them. It is named after James Joseph Sylvester ...
which (in its projective dual form) proves the existence of crossings of only two lines in any arrangement, that every zonohedron has at least one pair of opposite
parallelogram In Euclidean geometry, a parallelogram is a simple (non- self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equa ...
faces. (Squares, rectangles, and rhombuses count for this purpose as special cases of parallelograms.) More strongly, every zonohedron has at least six parallelogram faces, and every zonohedron has a number of parallelogram faces that is linear in its number of generators.


Types of zonohedra

Any
prism Prism usually refers to: * Prism (optics), a transparent optical component with flat surfaces that refract light * Prism (geometry), a kind of polyhedron Prism may also refer to: Science and mathematics * Prism (geology), a type of sedimentary ...
over a regular polygon with an even number of sides forms a zonohedron. These prisms can be formed so that all faces are regular: two opposite faces are equal to the regular polygon from which the prism was formed, and these are connected by a sequence of square faces. Zonohedra of this type are the
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only r ...
,
hexagonal prism In geometry, the hexagonal prism is a prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 faces, 18 edges, and 12 vertices.. Since it has 8 faces, it is an octahedron. However, the term ''octahedron'' is primarily used ...
,
octagonal prism In geometry, the octagonal prism is the sixth in an infinite set of prisms, formed by rectangular sides and two regular octagon caps. If faces are all regular, it is a semiregular polyhedron. Symmetry Images The octagonal prism can also ...
,
decagonal prism In geometry, the decagonal prism is the eighth in the infinite set of prisms, formed by ten square side faces and two regular decagon caps. With twelve faces, it is one of many nonregular dodecahedra. The decagonal prism has 12 faces, 30 edges, an ...
,
dodecagonal prism In geometry, the dodecagonal prism is the tenth in an infinite set of prisms, formed by square sides and two regular dodecagon caps. If faces are all regular, it is a uniform polyhedron. Use It is used in the construction of two prismatic uni ...
, etc. In addition to this infinite family of regular-faced zonohedra, there are three
Archimedean solid In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the convex uniform polyhedra composed of regular polygons meeting in identical vertices, excluding the five Platonic solids (which are composed ...
s, all omnitruncations of the regular forms: * The
truncated octahedron In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular hexagon, hexagons and 6 Squa ...
, with 6 square and 8 hexagonal faces. (Omnitruncated tetrahedron) * The
truncated cuboctahedron In geometry, the truncated cuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its fac ...
, with 12 squares, 8 hexagons, and 6 octagons. (Omnitruncated cube) * The
truncated icosidodecahedron In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron,Wenninger Model Number 16 great rhombicosidodecahedron,Williams (Section 3-9, p. 94)Cromwell (p. 82) omnitruncated dodecahedron or omnitruncated icosahedronNorman Wooda ...
, with 30 squares, 20 hexagons and 12 decagons. (Omnitruncated dodecahedron) In addition, certain
Catalan solid In mathematics, a Catalan solid, or Archimedean dual, is a dual polyhedron to an Archimedean solid. There are 13 Catalan solids. They are named for the Belgian mathematician Eugène Catalan, who first described them in 1865. The Catalan sol ...
s (duals of Archimedean solids) are again zonohedra: * Kepler's rhombic dodecahedron is the dual of the
cuboctahedron A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it ...
. * The
rhombic triacontahedron In geometry, the rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Ca ...
is the dual of the
icosidodecahedron In geometry, an icosidodecahedron is a polyhedron with twenty (''icosi'') triangular faces and twelve (''dodeca'') pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 id ...
. Others with congruent rhombic faces: * Bilinski's rhombic dodecahedron. *
Rhombic icosahedron The rhombic icosahedron is a polyhedron shaped like an oblate sphere. Its 20 faces are congruent golden rhombi; 3, 4, or 5 faces meet at each vertex. It has 5 faces (green on top figure) meeting at each of its 2 poles; these 2 vertices lie on it ...
*
Rhombohedron In geometry, a rhombohedron (also called a rhombic hexahedron or, inaccurately, a rhomboid) is a three-dimensional figure with six faces which are rhombi. It is a special case of a parallelepiped where all edges are the same length. It can be us ...
There are infinitely many zonohedra with rhombic faces that are not all congruent to each other. They include: *
Rhombic enneacontahedron In geometry, a rhombic enneacontahedron (plural: rhombic enneacontahedra) is a polyhedron composed of 90 Rhombus, rhombic faces; with three, five, or six rhombi meeting at each vertex. It has 60 broad rhombi and 30 slim. The rhombic enneacontahedr ...


Dissection of zonohedra

Although it is not generally true that any polyhedron has a
dissection Dissection (from Latin ' "to cut to pieces"; also called anatomization) is the dismembering of the body of a deceased animal or plant to study its anatomical structure. Autopsy is used in pathology and forensic medicine to determine the cause o ...
into any other polyhedron of the same volume (see
Hilbert's third problem The third of Hilbert's list of mathematical problems, presented in 1900, was the first to be solved. The problem is related to the following question: given any two polyhedra of equal volume, is it always possible to cut the first into finitely m ...
), it is known that any two zonohedra of equal volumes can be dissected into each other.


Zonohedrification

Zonohedrification is a process defined by
George W. Hart George William Hart (born 1955) is an American sculptor and geometer. Before retiring, he was an associate professor of Electrical Engineering at Columbia University in New York City and then an interdepartmental research professor at Stony B ...
for creating a zonohedron from another polyhedron. First the vertices of any seed polyhedron are considered vectors from the polyhedron center. These vectors create the zonohedron which we call the zonohedrification of the original polyhedron. If the seed polyhedron has
central symmetry In geometry, a point reflection (point inversion, central inversion, or inversion through a point) is a type of isometry of Euclidean space. An object that is invariant under a point reflection is said to possess point symmetry; if it is invari ...
, opposite points define the same direction, so the number of zones in the zonohedron is half the number of vertices of the seed. For any two vertices of the original polyhedron, there are two opposite planes of the zonohedrification which each have two edges parallel to the vertex vectors.


Zonotopes

The
Minkowski sum In geometry, the Minkowski sum (also known as dilation) of two sets of position vectors ''A'' and ''B'' in Euclidean space is formed by adding each vector in ''A'' to each vector in ''B'', i.e., the set : A + B = \. Analogously, the Minkowski ...
of
line segments In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
in any dimension forms a type of
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
called a zonotope. Equivalently, a zonotope Z generated by vectors v_1,...,v_k\in\mathbb^n is given by Z = \. Note that in the special case where k \leq n, the zonotope Z is a (possibly degenerate) parallelotope. The facets of any zonotope are themselves zonotopes of one lower dimension; for instance, the faces of zonohedra are
zonogon In geometry, a zonogon is a centrally-symmetric, convex polygon. Equivalently, it is a convex polygon whose sides can be grouped into parallel pairs with equal lengths and opposite orientations. Examples A regular polygon is a zonogon if and ...
s. Examples of four-dimensional zonotopes include the
tesseract In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eig ...
(Minkowski sums of ''d'' mutually perpendicular equal length line segments), the
omnitruncated 5-cell In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination (a 3rd order truncation, up to face-planing) of the regular 5-cell. There are 3 unique degrees of runcinations of the 5-cell, including with pe ...
, and the
truncated 24-cell In geometry, a truncated 24-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the truncation of the regular 24-cell. There are two degrees of truncations, including a bitruncation. Truncated 24-cell The truncated 24- ...
. Every
permutohedron In mathematics, the permutohedron of order ''n'' is an (''n'' − 1)-dimensional polytope embedded in an ''n''-dimensional space. Its vertex coordinates (labels) are the permutations of the first ''n'' natural numbers. The edges ident ...
is a zonotope.


Zonotopes and Matroids

Fix a zonotope Z defined from the set of vectors V = \\subset\mathbb^d and let M be the d \times n matrix whose columns are the v_i. Then the vector matroid \underline on the columns of M encodes a wealth of information about Z, that is, many properties of Z are purely combinatorial in nature. For example, pairs of opposite facets of Z are naturally indexed by the cocircuits of \mathcal and if we consider the
oriented matroid An oriented matroid is a mathematical structure that abstracts the properties of directed graphs, vector arrangements over ordered fields, and hyperplane arrangements over ordered fields. In comparison, an ordinary (i.e., non-oriented) matroid a ...
\mathcal represented by , then we obtain a bijection between facets of Z and signed cocircuits of \mathcal which extends to a poset anti-isomorphism between the
face lattice A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the wo ...
of Z and the covectors of \mathcal ordered by component-wise extension of 0 \prec +, -. In particular, if M and N are two matrices that differ by a
projective transformation In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, ...
then their respective zonotopes are combinatorially equivalent. The converse of the previous statement does not hold: the segment ,2\subset \mathbb is a zonotope and is generated by both \ and by \ whose corresponding matrices, /math> and ~1/math>, do not differ by a projective transformation.


Tilings

Tiling properties of the zonotope Z are also closely related to the oriented matroid \mathcal associated to it. First we consider the space-tiling property. The zonotope Z is said to ''tile'' \mathbb^d if there is a set of vectors \Lambda \subset \mathbb^d such that the union of all translates Z + \lambda (\lambda \in \Lambda) is \mathbb^d and any two translates intersect in a (possibly empty) face of each. Such a zonotope is called a ''space-tiling zonotope.'' The following classification of space-tiling zonotopes is due to McMullen: The zonotope Z generated by the vectors V tiles space if and only if the corresponding oriented matroid is regular. So the seemingly geometric condition of being a space-tiling zonotope actually depends only on the combinatorial structure of the generating vectors. Another family of tilings associated to the zonotope Z are the ''zonotopal tilings'' of Z. A collection of zonotopes is a zonotopal tiling of Z if it a polyhedral complex with support Z, that is, if the union of all zonotopes in the collection is Z and any two intersect in a common (possibly empty) face of each. Many of the images of zonohedra on this page can be viewed as zonotopal tilings of a 2-dimensional zonotope by simply considering them as planar objects (as opposed to planar representations of three dimensional objects). The Bohne-Dress Theorem states that there is a bijection between zonotopal tilings of the zonotope Z and ''single-element lifts'' of the oriented matroid \mathcal associated to Z.


Volume

Zonohedra, and ''n''-dimensional zonotopes in general, are noteworthy for admitting a simple analytic formula for their volume. Let Z(S) be the zonotope Z = \ generated by a set of vectors S = \. Then the n-dimensional volume of Z(S) is given by \sum_ , \det(Z(T)), . The determinant in this formula makes sense because (as noted above) when the set T has cardinality equal to the dimension n of the ambient space, the zonotope is a parallelotope. Note that when k, this formula simply states that the zonotope has n-volume zero.


References

* Reprinted in * * Rolf Schneider, Chapter 3.5 "Zonoids and other classes of convex bodies" in ''Convex bodies: the Brunn-Minkowski theory,'' Cambridge University Press, Cambridge, 1993. * * *


External links

* * * * * * {{ cite web , author = Centore, Paul , title = Chap. 2 of The Geometry of Colour , url = http://www.munsellcolourscienceforpainters.com/TheGeometryOfColour/TheGeometryOfColourPreview.pdf Polyhedra Oriented matroids de:Zonotop#Zonoeder