Naturally occurring
zinc
Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
(
30Zn) is composed of the 5 stable
isotope
Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
s
64Zn,
66Zn,
67Zn,
68Zn, and
70Zn with
64Zn being the most abundant (48.6%
natural abundance
In physics, natural abundance (NA) refers to the abundance of isotopes of a chemical element as naturally found on a planet. The relative atomic mass (a weighted average, weighted by mole-fraction abundance figures) of these isotopes is the atomi ...
). Twenty-five
radioisotope
A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
s have been characterised with the most abundant and stable being
65Zn with a
half-life
Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of 244.26 days, and
72Zn with a half-life of 46.5 hours. All of the remaining
radioactive
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
isotopes have half-lives that are less than 14 hours and the majority of these have half-lives that are less than 1 second. This element also has 10
meta state
A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy higher energy levels than in the ground state of the same nucleus. "Metastable" describes nuclei whose excited states have ...
s.
Zinc has been proposed as a "
salting" material for
nuclear weapon
A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission bomb) or a combination of fission and fusion reactions ( thermonuclear bomb), producing a nuclear explosion. Both bom ...
s. A jacket of
isotopically enriched 64Zn, irradiated by the intense high-energy neutron flux from an exploding
thermonuclear weapon
A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a low ...
, would transmute into the radioactive isotope
65Zn with a half-life of 244 days and produce approximately 1.115
MeV
In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacu ...
of
gamma radiation, significantly increasing the radioactivity of the weapon's
fallout
Nuclear fallout is the residual radioactive material propelled into the upper atmosphere following a nuclear blast, so called because it "falls out" of the sky after the explosion and the shock wave has passed. It commonly refers to the radioac ...
for several years. Such a weapon is not known to have ever been built, tested, or used.
List of isotopes
, -
,
54Zn
, style="text-align:right" , 30
, style="text-align:right" , 24
, 53.99295(43)#
, 1.59 ms
,
2p
,
52Ni
, 0+
,
,
, -
, rowspan=2,
55Zn
, rowspan=2 style="text-align:right" , 30
, rowspan=2 style="text-align:right" , 25
, rowspan=2, 54.98398(27)#
, rowspan=2, 20# ms
1.6 μs, 2p
,
53Ni
, rowspan=2, 5/2−#
, rowspan=2,
, rowspan=2,
, -
,
β+
,
55Cu
, -
,
56Zn
, style="text-align:right" , 30
, style="text-align:right" , 26
, 55.97238(28)#
, 36(10) ms
, β
+
,
56Cu
, 0+
,
,
, -
, rowspan=2,
57Zn
, rowspan=2 style="text-align:right" , 30
, rowspan=2 style="text-align:right" , 27
, rowspan=2, 56.96479(11)#
, rowspan=2, 38(4) ms
, β
+, p (65%)
,
56Ni
, rowspan=2, 7/2−#
, rowspan=2,
, rowspan=2,
, -
, β
+ (35%)
,
57Cu
, -
, rowspan=2,
58Zn
, rowspan=2 style="text-align:right" , 30
, rowspan=2 style="text-align:right" , 28
, rowspan=2, 57.95459(5)
, rowspan=2, 84(9) ms
, β
+, p (60%)
,
57Ni
, rowspan=2, 0+
, rowspan=2,
, rowspan=2,
, -
, β
+ (40%)
,
58Cu
, -
, rowspan=2,
59Zn
, rowspan=2 style="text-align:right" , 30
, rowspan=2 style="text-align:right" , 29
, rowspan=2, 58.94926(4)
, rowspan=2, 182.0(18) ms
, β
+ (99%)
,
59Cu
, rowspan=2, 3/2−
, rowspan=2,
, rowspan=2,
, -
, β
+, p (1%)
,
58Ni
, -
,
60Zn
[Final product of the ]silicon-burning process
In astrophysics, silicon burning is a very brief sequence of nuclear fusion reactions that occur in massive stars with a minimum of about 8–11 solar masses. Silicon burning is the final stage of fusion for massive stars that have run out of the f ...
; its production is endothermic and accelerates the star's collapse
, style="text-align:right" , 30
, style="text-align:right" , 30
, 59.941827(11)
, 2.38(5) min
, β
+
,
60Cu
, 0+
,
,
, -
,
61Zn
, style="text-align:right" , 30
, style="text-align:right" , 31
, 60.939511(17)
, 89.1(2) s
, β
+
,
61Cu
, 3/2−
,
,
, -
, style="text-indent:1em" ,
61m1Zn
, colspan="3" style="text-indent:2em" , 88.4(1) keV
, <430 ms
,
,
, 1/2−
,
,
, -
, style="text-indent:1em" ,
61m2Zn
, colspan="3" style="text-indent:2em" , 418.10(15) keV
, 140(70) ms
,
,
, 3/2−
,
,
, -
, style="text-indent:1em" ,
61m3Zn
, colspan="3" style="text-indent:2em" , 756.02(18) keV
, <130 ms
,
,
, 5/2−
,
,
, -
,
62Zn
, style="text-align:right" , 30
, style="text-align:right" , 32
, 61.934330(11)
, 9.186(13) h
, β
+
,
62Cu
, 0+
,
,
, -
,
63Zn
, style="text-align:right" , 30
, style="text-align:right" , 33
, 62.9332116(17)
, 38.47(5) min
, β
+
,
63Cu
, 3/2−
,
,
, -
,
64Zn
, style="text-align:right" , 30
, style="text-align:right" , 34
, 63.9291422(7)
, colspan=3 align=center,
Observationally Stable
Stable nuclides are nuclides that are not radioactive and so (unlike radionuclides) do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes.
Th ...
[Believed to undergo β+β+ decay to 64Ni with a half-life over 2.3×1018 a]
, 0+
, 0.4917(75)
,
, -
,
65Zn
, style="text-align:right" , 30
, style="text-align:right" , 35
, 64.9292410(7)
, 243.66(9) d
, β
+
,
65Cu
, 5/2−
,
,
, -
, style="text-indent:1em" ,
65mZn
, colspan="3" style="text-indent:2em" , 53.928(10) keV
, 1.6(6) μs
,
,
, (1/2)−
,
,
, -
,
66Zn
, style="text-align:right" , 30
, style="text-align:right" , 36
, 65.9260334(10)
, colspan=3 align=center, Stable
, 0+
, 0.2773(98)
,
, -
,
67Zn
, style="text-align:right" , 30
, style="text-align:right" , 37
, 66.9271273(10)
, colspan=3 align=center, Stable
, 5/2−
, 0.0404(16)
,
, -
,
68Zn
, style="text-align:right" , 30
, style="text-align:right" , 38
, 67.9248442(10)
, colspan=3 align=center, Stable
, 0+
, 0.1845(63)
,
, -
,
69Zn
, style="text-align:right" , 30
, style="text-align:right" , 39
, 68.9265503(10)
, 56.4(9) min
, β
−
,
69Ga
, 1/2−
,
,
, -
, rowspan=2 style="text-indent:1em" ,
69mZn
, rowspan=2 colspan="3" style="text-indent:2em" , 438.636(18) keV
, rowspan=2, 13.76(2) h
,
IT (96.7%)
,
69Zn
, rowspan=2, 9/2+
, rowspan=2,
, rowspan=2,
, -
, β
− (3.3%)
,
69Ga
, -
,
70Zn
, style="text-align:right" , 30
, style="text-align:right" , 40
, 69.9253193(21)
, colspan=3 align=center, Observationally Stable
[Believed to undergo β−β− decay to 70Ge with a half-life over 1.3×1016 a]
, 0+
, 0.0061(10)
,
, -
,
71Zn
, style="text-align:right" , 30
, style="text-align:right" , 41
, 70.927722(11)
, 2.45(10) min
, β
−
,
71Ga
, 1/2−
,
,
, -
, rowspan=2 style="text-indent:1em" ,
71mZn
, rowspan=2 colspan="3" style="text-indent:2em" , 157.7(13) keV
, rowspan=2, 3.96(5) h
, β
− (99.95%)
,
71Ga
, rowspan=2, 9/2+
, rowspan=2,
, rowspan=2,
, -
, IT (.05%)
,
71Zn
, -
,
72Zn
, style="text-align:right" , 30
, style="text-align:right" , 42
, 71.926858(7)
, 46.5(1) h
, β
−
,
72Ga
, 0+
,
,
, -
,
73Zn
, style="text-align:right" , 30
, style="text-align:right" , 43
, 72.92978(4)
, 23.5(10) s
, β
−
,
73Ga
, (1/2)−
,
,
, -
, style="text-indent:1em" ,
73m1Zn
, colspan="3" style="text-indent:2em" , 195.5(2) keV
, 13.0(2) ms
,
,
, (5/2+)
,
,
, -
, rowspan=2 style="text-indent:1em" ,
73m2Zn
, rowspan=2 colspan="3" style="text-indent:2em" , 237.6(20) keV
, rowspan=2, 5.8(8) s
, β
−
,
73Ga
, rowspan=2, (7/2+)
, rowspan=2,
, rowspan=2,
, -
, IT
,
73Zn
, -
,
74Zn
, style="text-align:right" , 30
, style="text-align:right" , 44
, 73.92946(5)
, 95.6(12) s
, β
−
,
74Ga
, 0+
,
,
, -
,
75Zn
, style="text-align:right" , 30
, style="text-align:right" , 45
, 74.93294(8)
, 10.2(2) s
, β
−
,
75Ga
, (7/2+)#
,
,
, -
,
76Zn
, style="text-align:right" , 30
, style="text-align:right" , 46
, 75.93329(9)
, 5.7(3) s
, β
−
,
76Ga
, 0+
,
,
, -
,
77Zn
, style="text-align:right" , 30
, style="text-align:right" , 47
, 76.93696(13)
, 2.08(5) s
, β
−
,
77Ga
, (7/2+)#
,
,
, -
, rowspan=2 style="text-indent:1em" ,
77mZn
, rowspan=2 colspan="3" style="text-indent:2em" , 772.39(12) keV
, rowspan=2, 1.05(10) s
, IT (50%)
,
77Zn
, rowspan=2, 1/2−#
, rowspan=2,
, rowspan=2,
, -
, β
− (50%)
,
77Ga
, -
,
78Zn
, style="text-align:right" , 30
, style="text-align:right" , 48
, 77.93844(10)
, 1.47(15) s
, β
−
,
78Ga
, 0+
,
,
, -
, style="text-indent:1em" ,
78mZn
, colspan="3" style="text-indent:2em" , 2673(1) keV
, 319(9) ns
,
,
, (8+)
,
,
, -
, rowspan=2,
79Zn
, rowspan=2 style="text-align:right" , 30
, rowspan=2 style="text-align:right" , 49
, rowspan=2, 78.94265(28)#
, rowspan=2, 0.995(19) s
, β
− (98.7%)
,
79Ga
, rowspan=2, (9/2+)
, rowspan=2,
, rowspan=2,
, -
, β
−,
n (1.3%)
,
78Ga
, -
, rowspan=2,
80Zn
, rowspan=2 style="text-align:right" , 30
, rowspan=2 style="text-align:right" , 50
, rowspan=2, 79.94434(18)
, rowspan=2, 545(16) ms
, β
− (99%)
,
80Ga
, rowspan=2, 0+
, rowspan=2,
, rowspan=2,
, -
, β
−, n (1%)
,
79Ga
, -
, rowspan=2,
81Zn
, rowspan=2 style="text-align:right" , 30
, rowspan=2 style="text-align:right" , 51
, rowspan=2, 80.95048(32)#
, rowspan=2, 290(50) ms
, β
− (92.5%)
,
81Ga
, rowspan=2, 5/2+#
, rowspan=2,
, rowspan=2,
, -
, β
−, n (7.5%)
,
80Ga
, -
,
82Zn
, style="text-align:right" , 30
, style="text-align:right" , 52
, 81.95442(54)#
, 100# ms
300 ns, β
−
,
82Ga
, 0+
,
,
, -
,
83Zn
, style="text-align:right" , 30
, style="text-align:right" , 53
, 82.96103(54)#
, 80# ms
300 ns,
,
, 5/2+#
,
,
References
* Isotope masses from:
**
* Isotopic compositions and standard atomic masses from:
**
**
* Half-life, spin, and isomer data selected from the following sources.
**
**
**
External links
Zinc isotopes data from ''The Berkeley Laboratory Isotopes Project's''
{{Authority control
Zinc
Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...