Ytterbium Sesquisulfide
   HOME

TheInfoList



OR:

Ytterbium is a chemical element with the
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yttr ...
series, which is the basis of the relative stability of its +2 oxidation state. However, like the other lanthanides, its most common oxidation state is +3, as in its
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
,
halide In chemistry, a halide (rarely halogenide) is a binary chemical compound, of which one part is a halogen atom and the other part is an element or radical that is less electronegative (or more electropositive) than the halogen, to make a fluor ...
s, and other compounds. In
aqueous solution An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would be re ...
, like compounds of other late lanthanides, soluble ytterbium compounds form complexes with nine water molecules. Because of its closed-shell electron configuration, its density and melting and boiling points differ significantly from those of most other lanthanides. In 1878, the Swiss chemist Jean Charles Galissard de Marignac separated from the rare earth "erbia" another independent component, which he called "
ytterbia Ytterbium(III) oxide is the chemical compound with the formula Yb2O3. It is one of the more commonly encountered compounds of ytterbium. It has the "rare-earth C-type sesquioxide" structure which is related to the fluorite structure with one quart ...
", for Ytterby, the village in
Sweden Sweden, formally the Kingdom of Sweden,The United Nations Group of Experts on Geographical Names states that the country's formal name is the Kingdom of SwedenUNGEGN World Geographical Names, Sweden./ref> is a Nordic country located on ...
near where he found the new component of erbium. He suspected that ytterbia was a compound of a new element that he called "ytterbium" (in total, four elements were named after the village, the others being yttrium, terbium, and erbium). In 1907, the new earth "lutecia" was separated from ytterbia, from which the element "lutecium" (now lutetium) was extracted by Georges Urbain, Carl Auer von Welsbach, and Charles James. After some discussion, Marignac's name "ytterbium" was retained. A relatively pure sample of the metal was not obtained until 1953. At present, ytterbium is mainly used as a dopant of stainless steel or active laser media, and less often as a gamma ray source. Natural ytterbium is a mixture of seven stable isotopes, which altogether are present at concentrations of 0.3 parts per million. This element is mined in China, the United States, Brazil, and India in form of the minerals monazite,
euxenite Euxenite, or euxenite-(Y) (the official mineralogical name), is a brownish black mineral with a metallic luster. Chemistry It contains calcium, niobium, tantalum, cerium, titanium, yttrium, and typically uranium and thorium, with some other meta ...
, and
xenotime Xenotime is a rare-earth phosphate mineral, the major component of which is yttrium orthophosphate ( Y P O4). It forms a solid solution series with chernovite-(Y) ( Y As O4) and therefore may contain trace impurities of arsenic, as well as si ...
. The ytterbium concentration is low because it is found only among many other rare-earth elements; moreover, it is among the least abundant. Once extracted and prepared, ytterbium is somewhat hazardous as an eye and skin irritant. The metal is a fire and explosion hazard.


Characteristics


Physical properties

Ytterbium is a soft, malleable and ductile chemical element that displays a bright silvery luster when pure. It is a rare-earth element, and it is readily dissolved by the strong mineral acids. It
reacts ''React'' (from Spanish: ''Reacciona'') is a book by Rosa María Artal published in Spain in 2011 by Aguilar, which compiles articles by José Luis Sampedro, Baltasar Garzón, Federico Mayor Zaragoza, Javier Pérez de Albéniz, Javier López Facal ...
slowly with cold water and it
oxidizes Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a d ...
slowly in air. Ytterbium has three allotropes labeled by the Greek letters alpha, beta and gamma; their transformation temperatures are −13 ° C and 795 °C, although the exact transformation temperature depends on the pressure and stress. The beta allotrope (6.966 g/cm3) exists at room temperature, and it has a face-centered cubic crystal structure. The high-temperature gamma allotrope (6.57 g/cm3) has a body-centered cubic crystalline structure. The alpha allotrope (6.903 g/cm3) has a hexagonal crystalline structure and is stable at low temperatures. The beta allotrope has a metallic
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allow ...
at normal atmospheric pressure, but it becomes a semiconductor when exposed to a pressure of about 16,000
atmospheres The standard atmosphere (symbol: atm) is a unit of pressure defined as Pa. It is sometimes used as a ''reference pressure'' or ''standard pressure''. It is approximately equal to Earth's average atmospheric pressure at sea level. History The s ...
(1.6  GPa). Its electrical resistivity increases ten times upon compression to 39,000 atmospheres (3.9 GPa), but then drops to about 10% of its room-temperature resistivity at about 40,000 atm (4.0 GPa). In contrast with the other rare-earth metals, which usually have antiferromagnetic and/or
ferromagnetic Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
properties at low temperatures, ytterbium is paramagnetic at temperatures above 1.0 kelvin. However, the alpha allotrope is diamagnetic. With a melting point of 824 °C and a
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envir ...
of 1196 °C, ytterbium has the smallest liquid range of all the metals. Contrary to most other lanthanides, which have a close-packed hexagonal lattice, ytterbium crystallizes in the face-centered cubic system. Ytterbium has a density of 6.973 g/cm3, which is significantly lower than those of the neighboring lanthanides, thulium (9.32 g/cm3) and lutetium (9.841 g/cm3). Its melting and boiling points are also significantly lower than those of thulium and lutetium. This is due to the closed-shell electron configuration of ytterbium ( e4f14 6s2), which causes only the two 6s electrons to be available for metallic bonding (in contrast to the other lanthanides where three electrons are available) and increases ytterbium's
metallic radius Metallic bonding is a type of chemical bonding that arises from the electrostatic attractive force between conduction electrons (in the form of an electron cloud of delocalized electrons) and positively charged metal ions. It may be descr ...
.


Chemical properties

Ytterbium metal tarnishes slowly in air, taking on a golden or brown hue. Finely dispersed ytterbium readily oxidizes in air and under oxygen. Mixtures of powdered ytterbium with
polytetrafluoroethylene Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer of tetrafluoroethylene that has numerous applications. It is one of the best-known and widely applied PFAS. The commonly known brand name of PTFE-based composition is Teflon by Chemour ...
or hexachloroethane burn with a luminous emerald-green flame. Ytterbium reacts with hydrogen to form various
non-stoichiometric In chemistry, non-stoichiometric compounds are chemical compounds, almost always solid inorganic compounds, having elemental composition whose proportions cannot be represented by a ratio of small natural numbers (i.e. an empirical formula); mos ...
hydrides. Ytterbium dissolves slowly in water, but quickly in acids, liberating hydrogen gas. Ytterbium is quite electropositive, and it reacts slowly with cold water and quite quickly with hot water to form ytterbium(III) hydroxide: :2 Yb (s) + 6 H2O (l) → 2 Yb(OH)3 (aq) + 3 H2 (g) Ytterbium reacts with all the
halogen The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this group is ...
s: :2 Yb (s) + 3 F2 (g) → 2 YbF3 (s) hite:2 Yb (s) + 3 Cl2 (g) → 2 YbCl3 (s) hite:2 Yb (s) + 3 Br2 (g) → 2 YbBr3 (s) hite:2 Yb (s) + 3 I2 (g) → 2 YbI3 (s) hite The ytterbium(III) ion absorbs light in the near infrared range of wavelengths, but not in visible light, so
ytterbia Ytterbium(III) oxide is the chemical compound with the formula Yb2O3. It is one of the more commonly encountered compounds of ytterbium. It has the "rare-earth C-type sesquioxide" structure which is related to the fluorite structure with one quart ...
, Yb2O3, is white in color and the salts of ytterbium are also colorless. Ytterbium dissolves readily in dilute
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formu ...
to form solutions that contain the colorless Yb(III) ions, which exist as nonahydrate complexes: :2 Yb (s) + 3 H2SO4 (aq) + 18 (l) → 2 b(H2O)9sup>3+ (aq) + 3 (aq) + 3 H2 (g)


Yb(II) vs. Yb(III)

Although usually trivalent, ytterbium readily forms divalent compounds. This behavior is unusual for
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yttr ...
s, which almost exclusively form compounds with an oxidation state of +3. The +2 state has a valence
electron configuration In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon atom ...
of 4''f''14 because the fully filled ''f''-shell gives more stability. The yellow-green ytterbium(II) ion is a very strong reducing agent and decomposes water, releasing hydrogen gas, and thus only the colorless ytterbium(III) ion occurs in
aqueous solution An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would be re ...
. Samarium and thulium also behave this way in the +2 state, but
europium Europium is a chemical element with the symbol Eu and atomic number 63. Europium is the most reactive lanthanide by far, having to be stored under an inert fluid to protect it from atmospheric oxygen or moisture. Europium is also the softest lanth ...
(II) is stable in aqueous solution. Ytterbium metal behaves similarly to europium metal and the alkaline earth metals, dissolving in ammonia to form blue electride salts.


Isotopes

Natural ytterbium is composed of seven stable isotopes: 168Yb, 170Yb, 171Yb, 172Yb, 173Yb, 174Yb, and 176Yb, with 174Yb being the most common, at 31.8% of the natural abundance). 27 radioisotopes have been observed, with the most stable ones being 169Yb with a half-life of 32.0 days, 175Yb with a half-life of 4.18 days, and 166Yb with a half-life of 56.7 hours. All of the remaining radioactive isotopes have half-lives that are less than two hours, and most of these have half-lives under 20 minutes. Ytterbium also has 12 meta states, with the most stable being 169mYb (''t''1/2 46 seconds). The isotopes of ytterbium range in atomic weight from 147.9674 atomic mass unit (u) for 148Yb to 180.9562 u for 181Yb. The primary
decay mode Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
of ytterbium isotopes lighter than the most abundant stable isotope, 174Yb, is electron capture, and the primary decay mode for those heavier than 174Yb is beta decay. The primary
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( ...
s of ytterbium isotopes lighter than 174Yb are thulium isotopes, and the primary decay products of ytterbium isotopes with heavier than 174Yb are lutetium isotopes.


Occurrence

Ytterbium is found with other rare-earth elements in several rare minerals. It is most often recovered commercially from monazite sand (0.03% ytterbium). The element is also found in
euxenite Euxenite, or euxenite-(Y) (the official mineralogical name), is a brownish black mineral with a metallic luster. Chemistry It contains calcium, niobium, tantalum, cerium, titanium, yttrium, and typically uranium and thorium, with some other meta ...
and
xenotime Xenotime is a rare-earth phosphate mineral, the major component of which is yttrium orthophosphate ( Y P O4). It forms a solid solution series with chernovite-(Y) ( Y As O4) and therefore may contain trace impurities of arsenic, as well as si ...
. The main mining areas are
China China, officially the People's Republic of China (PRC), is a country in East Asia. It is the world's most populous country, with a population exceeding 1.4 billion, slightly ahead of India. China spans the equivalent of five time zones and ...
, the United States, Brazil, India,
Sri Lanka Sri Lanka (, ; si, ශ්‍රී ලංකා, Śrī Laṅkā, translit-std=ISO (); ta, இலங்கை, Ilaṅkai, translit-std=ISO ()), formerly known as Ceylon and officially the Democratic Socialist Republic of Sri Lanka, is an ...
, and
Australia Australia, officially the Commonwealth of Australia, is a Sovereign state, sovereign country comprising the mainland of the Australia (continent), Australian continent, the island of Tasmania, and numerous List of islands of Australia, sma ...
. Reserves of ytterbium are estimated as one million tonnes. Ytterbium is normally difficult to separate from other rare earths, but
ion-exchange Ion exchange is a reversible interchange of one kind of ion present in an insoluble solid with another of like charge present in a solution surrounding the solid with the reaction being used especially for softening or making water demineralised, ...
and solvent extraction techniques developed in the mid- to late 20th century have simplified separation. Compounds of ytterbium are rare and have not yet been well characterized. The abundance of ytterbium in the Earth's crust is about 3 mg/kg. As an even-numbered lanthanide, in accordance with the Oddo-Harkins rule, ytterbium is significantly more abundant than its immediate neighbors, thulium and lutetium, which occur in the same concentrate at levels of about 0.5% each. The world production of ytterbium is only about 50 tonnes per year, reflecting that it has few commercial applications. Microscopic traces of ytterbium are used as a dopant in the Yb:YAG laser, a solid-state laser in which ytterbium is the element that undergoes
stimulated emission Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to th ...
of electromagnetic radiation. Ytterbium is often the most common substitute in yttrium minerals. In very few known cases/occurrences ytterbium prevails over yttrium, as, e.g., in
xenotime Xenotime is a rare-earth phosphate mineral, the major component of which is yttrium orthophosphate ( Y P O4). It forms a solid solution series with chernovite-(Y) ( Y As O4) and therefore may contain trace impurities of arsenic, as well as si ...
-(Yb). A report of native ytterbium from the Moon's regolith is known.


Production

It is relatively difficult to separate ytterbium from other lanthanides due to its similar properties. As a result, the process is somewhat long. First, minerals such as monazite or
xenotime Xenotime is a rare-earth phosphate mineral, the major component of which is yttrium orthophosphate ( Y P O4). It forms a solid solution series with chernovite-(Y) ( Y As O4) and therefore may contain trace impurities of arsenic, as well as si ...
are dissolved into various acids, such as
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formu ...
. Ytterbium can then be separated from other lanthanides by ion exchange, as can other lanthanides. The solution is then applied to a resin, which different lanthanides bind in different matters. This is then dissolved using complexing agents, and due to the different types of bonding exhibited by the different lanthanides, it is possible to isolate the compounds. Ytterbium is separated from other rare earths either by ion exchange or by reduction with sodium amalgam. In the latter method, a buffered acidic solution of trivalent rare earths is treated with molten sodium-mercury alloy, which reduces and dissolves Yb3+. The alloy is treated with hydrochloric acid. The metal is extracted from the solution as oxalate and converted to oxide by heating. The oxide is reduced to metal by heating with lanthanum, aluminium, cerium or zirconium in high vacuum. The metal is purified by sublimation and collected over a condensed plate.


Compounds

The chemical behavior of ytterbium is similar to that of the rest of the
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yttr ...
s. Most ytterbium compounds are found in the +3 oxidation state, and its salts in this oxidation state are nearly colorless. Like
europium Europium is a chemical element with the symbol Eu and atomic number 63. Europium is the most reactive lanthanide by far, having to be stored under an inert fluid to protect it from atmospheric oxygen or moisture. Europium is also the softest lanth ...
, samarium, and thulium, the trihalides of ytterbium can be reduced to the dihalides by hydrogen, zinc dust, or by the addition of metallic ytterbium. The +2 oxidation state occurs only in solid compounds and reacts in some ways similarly to the alkaline earth metal compounds; for example, ytterbium(II) oxide (YbO) shows the same structure as calcium oxide (CaO).


Halides

Ytterbium forms both dihalides and trihalides with the
halogen The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this group is ...
s
fluorine Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. As the most electronegative reactive element, it is extremely reacti ...
, chlorine, bromine, and
iodine Iodine is a chemical element with the symbol I and atomic number 53. The heaviest of the stable halogens, it exists as a semi-lustrous, non-metallic solid at standard conditions that melts to form a deep violet liquid at , and boils to a vi ...
. The dihalides are susceptible to oxidation to the trihalides at room temperature and disproportionate to the trihalides and metallic ytterbium at high temperature: :3 YbX2 → 2 YbX3 + Yb (X = F, Cl, Br, I) Some ytterbium halides are used as
reagent In chemistry, a reagent ( ) or analytical reagent is a substance or compound added to a system to cause a chemical reaction, or test if one occurs. The terms ''reactant'' and ''reagent'' are often used interchangeably, but reactant specifies a ...
s in
organic synthesis Organic synthesis is a special branch of chemical synthesis and is concerned with the intentional construction of organic compounds. Organic molecules are often more complex than inorganic compounds, and their synthesis has developed into one o ...
. For example,
ytterbium(III) chloride Ytterbium(III) chloride (Ytterbium, YbChlorine, Cl3) is an inorganic chemical compound. It reacts with NiCl2 to form a very effective Catalysis, catalyst for the Reductive dechlorination, reductive dehalogenation of aryl halides. It is poisonous ...
(YbCl3) is a
Lewis acid A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any sp ...
and can be used as a catalyst in the Aldol and
Diels–Alder reaction In organic chemistry, the Diels–Alder reaction is a chemical reaction between a conjugated diene and a substituted alkene, commonly termed the dienophile, to form a substituted cyclohexene derivative. It is the prototypical example of a peric ...
s. Ytterbium(II) iodide (YbI2) may be used, like samarium(II) iodide, as a reducing agent for coupling reactions.
Ytterbium(III) fluoride Ytterbium(III) fluoride () is an inorganic chemical compound A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chem ...
(YbF3) is used as an inert and non-toxic
tooth filling Dental restoration, dental fillings, or simply fillings are treatments used to restore the function, integrity, and morphology of missing tooth structure resulting from caries or external trauma as well as to the replacement of such structure sup ...
as it continuously releases
fluoride Fluoride (). According to this source, is a possible pronunciation in British English. is an inorganic, monatomic anion of fluorine, with the chemical formula (also written ), whose salts are typically white or colorless. Fluoride salts typ ...
ions, which are good for dental health, and is also a good
X-ray contrast agent Radiocontrast agents are substances used to enhance the visibility of internal structures in X-ray-based imaging techniques such as computed tomography (contrast CT), projectional radiography, and fluoroscopy. Radiocontrast agents are typically io ...
.Enghag, Per (2004). ''Encyclopedia of the elements: technical data, history, processing, applications.'' John Wiley & Sons,
p. 448


Oxides

Ytterbium reacts with oxygen to form ytterbium(III) oxide (Yb2O3), which crystallizes in the "rare-earth C-type sesquioxide" structure which is related to the fluorite structure with one quarter of the anions removed, leading to ytterbium atoms in two different six coordinate (non-octahedral) environments. Ytterbium(III) oxide can be reduced to
ytterbium(II) oxide Ytterbium is a chemical element with the symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. However, like the othe ...
(YbO) with elemental ytterbium, which crystallizes in the same structure as
sodium chloride Sodium chloride , commonly known as salt (although sea salt also contains other chemical salts), is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. With molar masses of 22.99 and 35.45 g ...
.


Borides

Ytterbium dodecaboride (YbB12) is a crystalline material that has been studied to understand various electronic and structural properties of many chemically related substances. It is a Kondo insulator. It is a
quantum material Quantum materials is an umbrella term in condensed matter physics that encompasses all materials whose essential properties cannot be described in terms of semiclassical particles and low-level quantum mechanics. These are materials that present ...
; under normal conditions, the interior of the bulk crystal is an insulator whereas the surface is highly conductive. Among the
rare earth element The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides (yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous silv ...
s, ytterbium is one of the few that can form a stable dodecaboride, a property attributed to its comparatively small atomic radius.


History

Ytterbium was discovered by the Swiss chemist Jean Charles Galissard de Marignac in the year 1878. While examining samples of
gadolinite Gadolinite, sometimes known as ytterbite, is a silicate mineral consisting principally of the silicates of cerium, lanthanum, neodymium, yttrium, beryllium, and iron with the formula . It is called gadolinite-(Ce) or gadolinite-(Y), depending on ...
, Marignac found a new component in the earth then known as erbia, and he named it ytterbia, for Ytterby, the
Swedish Swedish or ' may refer to: Anything from or related to Sweden, a country in Northern Europe. Or, specifically: * Swedish language, a North Germanic language spoken primarily in Sweden and Finland ** Swedish alphabet, the official alphabet used by ...
village near where he found the new component of erbium. Marignac suspected that ytterbia was a compound of a new element that he called "ytterbium". In 1907, the French chemist Georges Urbain separated Marignac's ytterbia into two components: neoytterbia and lutecia. Neoytterbia later became known as the element ytterbium, and lutecia became known as the element lutetium. The Austrian chemist Carl Auer von Welsbach independently isolated these elements from ytterbia at about the same time, but he called them aldebaranium and cassiopeium; the American chemist Charles James also independently isolated these elements at about the same time. Urbain and Welsbach accused each other of publishing results based on the other party. The Commission on Atomic Mass, consisting of
Frank Wigglesworth Clarke Frank Wigglesworth Clarke (March 19, 1847 – May 23, 1931) of Boston, Massachusetts, and Washington, D.C. was an American scientist and chemist. Sometimes known as the "Father of Geochemistry," Clarke is credited with determining the compositi ...
, Wilhelm Ostwald, and Georges Urbain, which was then responsible for the attribution of new element names, settled the dispute in 1909 by granting priority to Urbain and adopting his names as official ones, based on the fact that the separation of lutetium from Marignac's ytterbium was first described by Urbain. After Urbain's names were recognized, neoytterbium was reverted to ytterbium. The chemical and physical properties of ytterbium could not be determined with any precision until 1953, when the first nearly pure ytterbium metal was produced by using
ion-exchange Ion exchange is a reversible interchange of one kind of ion present in an insoluble solid with another of like charge present in a solution surrounding the solid with the reaction being used especially for softening or making water demineralised, ...
processes. The price of ytterbium was relatively stable between 1953 and 1998 at about US$1,000/kg.


Applications


Source of gamma rays

The 169Yb isotope (with a half-life of 32 days), which is created along with the short-lived 175Yb isotope (half-life 4.2 days) by neutron activation during the irradiation of ytterbium in nuclear reactors, has been used as a
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
source in portable X-ray machines. Like X-rays, the gamma rays emitted by the source pass through soft tissues of the body, but are blocked by bones and other dense materials. Thus, small 169Yb samples (which emit gamma rays) act like tiny X-ray machines useful for radiography of small objects. Experiments show that radiographs taken with a 169Yb source are roughly equivalent to those taken with X-rays having energies between 250 and 350 keV. 169Yb is also used in nuclear medicine.


High-stability atomic clocks

Ytterbium clocks hold the record for stability with ticks stable to within less than two parts in 1 quintillion (). The clocks developed at the National Institute of Standards and Technology (NIST) rely on about 10,000 rare-earth atoms cooled to 10 microkelvin (10 millionths of a degree above
absolute zero Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibration ...
) and trapped in an optical lattice—a series of pancake-shaped wells made of laser light. Another laser that "ticks" 518 trillion times per second provokes a transition between two energy levels in the atoms. The large number of atoms is key to the clocks' high stability. Visible light waves oscillate faster than microwaves, and therefore optical clocks can be more precise than
caesium Caesium (IUPAC spelling) (or cesium in American English) is a chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only five elemental metals that a ...
atomic clocks. The
Physikalisch-Technische Bundesanstalt The Physikalisch-Technische Bundesanstalt (PTB) is the national metrology institute of the Federal Republic of Germany, with scientific and technical service tasks. It is a higher federal authority and a public-law institution directly under fed ...
is working on several such optical clocks. The model with one single ytterbium ion caught in an ion trap is highly accurate. The optical clock based on it is exact to 17 digits after the decimal point. A pair of experimental atomic clocks based on ytterbium atoms at the National Institute of Standards and Technology has set a record for stability. NIST physicists reported in the August 22, 2013 issue of Science Express that the ytterbium clocks' ticks are stable to within less than two parts in 1 quintillion (1 followed by 18 zeros), roughly 10 times better than the previous best published results for other atomic clocks. The clocks would be accurate within a second for a period comparable to the age of the universe.


Doping of stainless steel

Ytterbium can also be used as a dopant to help improve the grain refinement, strength, and other mechanical properties of
stainless steel Stainless steel is an alloy of iron that is resistant to rusting and corrosion. It contains at least 11% chromium and may contain elements such as carbon, other nonmetals and metals to obtain other desired properties. Stainless steel's corros ...
. Some ytterbium alloys have rarely been used in
dentistry Dentistry, also known as dental medicine and oral medicine, is the branch of medicine focused on the teeth, gums, and mouth. It consists of the study, diagnosis, prevention, management, and treatment of diseases, disorders, and conditions o ...
.


Ytterbium as dopant of active media

The Yb3+ ion is used as a doping material in active laser media, specifically in solid state lasers and
double clad fiber Double-clad fiber (DCF) is a class of optical fiber with a structure consisting of three layers of optical material instead of the usual two. The inner-most layer is called the ''Fiber optics#Principle of operation, core''. It is surrounded by t ...
lasers. Ytterbium lasers are highly efficient, have long lifetimes and can generate short pulses; ytterbium can also easily be incorporated into the material used to make the laser. Ytterbium lasers commonly radiate in the 1.06–1.12 
µm The micrometre ( international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American spelling), also commonly known as a micron, is a unit of length in the International System of Unit ...
band being optically pumped at wavelength 900 nm–1 µm, dependently on the host and application. The small quantum defect makes ytterbium a prospective dopant for efficient lasers and power scaling. The kinetic of excitations in ytterbium-doped materials is simple and can be described within the concept of effective cross-sections; for most ytterbium-doped laser materials (as for many other optically pumped gain media), the
McCumber relation The McCumber relation (or McCumber theory) is a relationship between the effective cross-sections of absorption and emission of light in the physics of solid-state lasers.D.E.McCumber. Einstein relations connecting broadband emission and absorption ...
holds, although the application to the ytterbium-doped composite materials was under discussion. Usually, low concentrations of ytterbium are used. At high concentrations, the ytterbium-doped materials show
photodarkening Photodarkening is an optical effect observed in the interaction of laser radiation with amorphous media (glasses) in optical fibers. Until now, such creation of color centers was reported only in glass fibers. Photodarkening limits the density of e ...
(glass fibers) or even a switch to broadband emission (crystals and ceramics) instead of efficient laser action. This effect may be related with not only overheating, but also with conditions of
charge compensation Charge or charged may refer to: Arts, entertainment, and media Films * ''Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * ''Charge!!'', an album by The Aqua ...
at high concentrations of ytterbium ions. Much progress has been made in the power scaling lasers and amplifiers produced with ytterbium (Yb) doped optical fibers. Power levels have increased from the 1 kW regimes due to the advancements in components as well as the Yb-doped fibers. Fabrication of Low NA, Large Mode Area fibers enable achievement of near perfect beam qualities (M2<1.1) at power levels of 1.5 kW to greater than 2 kW at ~1064 nm in a broadband configuration. Ytterbium-doped LMA fibers also have the advantages of a larger mode field diameter, which negates the impacts of nonlinear effects such as stimulated
Brillouin scattering Brillouin scattering (also known as Brillouin light scattering or BLS), named after Léon Brillouin, refers to the interaction of light with the material waves in a medium (e.g. electrostriction and magnetostriction). It is mediated by the refr ...
and stimulated Raman scattering, which limit the achievement of higher power levels, and provide a distinct advantage over single mode ytterbium-doped fibers. In order to achieve even higher power levels in ytterbium-based fiber systems. all factors of the fiber must be considered. These can be achieved only via optimization of all the ytterbium fiber parameters, ranging from the core background losses to the geometrical properties, in order to reduce the splice losses within the cavity. Power scaling also requires optimization of matching passive fibers within the optical cavity. The optimization of the ytterbium-doped glass itself through host glass modification of various dopants also plays a large part in reducing the background loss of the glass, improvements in slope efficiency of the fiber, and improved photodarkening performance, all of which contribute to increased power levels in 1 µm systems.


Ion Qubits for Quantum Computing

The charged ion 171Yb+ is used in trapped-ion qubits in
quantum computing Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though ...
. Entangling gates, such as the
Mølmer–Sørensen gate In quantum computing, Mølmer–Sørensen gate scheme (or MS gate) refers to an implementation procedure for various multi- qubit quantum logic gates used mostly in trapped ion quantum computing. This procedure is based on the original proposition ...
, have been achieved by addressing the ions with mode-locked pulse lasers.


Others

Ytterbium metal increases its electrical resistivity when subjected to high stresses. This property is used in stress gauges to monitor ground deformations from earthquakes and explosions. Currently, ytterbium is being investigated as a possible replacement for magnesium in high density pyrotechnic payloads for kinematic infrared decoy flares. As ytterbium(III) oxide has a significantly higher emissivity in the infrared range than magnesium oxide, a higher radiant intensity is obtained with ytterbium-based payloads in comparison to those commonly based on magnesium/Teflon/Viton (MTV).


Precautions

Although ytterbium is fairly stable chemically, it is stored in airtight containers and in an inert atmosphere such as a nitrogen-filled dry box to protect it from air and moisture. All compounds of ytterbium are treated as highly toxic, although studies appear to indicate that the danger is minimal. However, ytterbium compounds cause irritation to human skin and eyes, and some might be teratogenic. Metallic ytterbium dust can spontaneously combust, and the resulting fumes are hazardous. Ytterbium fires cannot be extinguished using water, and only dry chemical class D fire extinguishers can extinguish the fires.


References


Further reading

*''Guide to the Elements – Revised Edition'', Albert Stwertka, (Oxford University Press; 1998)


External links


It's Elemental – Ytterbium
*
Encyclopedia of Geochemistry - Ytterbium
{{Good article Chemical elements Chemical elements with face-centered cubic structure Lanthanides Suspected teratogens