Ytterbium(III) Perhenate
   HOME

TheInfoList



OR:

Ytterbium is a
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
with the
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
Yb and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
70. It is a metal, the fourteenth and penultimate element in the
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yttr ...
series, which is the basis of the relative stability of its +2
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
. However, like the other lanthanides, its most common oxidation state is +3, as in its
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
,
halide In chemistry, a halide (rarely halogenide) is a binary chemical compound, of which one part is a halogen atom and the other part is an element or radical that is less electronegative (or more electropositive) than the halogen, to make a fluor ...
s, and other compounds. In
aqueous solution An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would be re ...
, like compounds of other late lanthanides, soluble ytterbium compounds form complexes with nine water molecules. Because of its closed-shell electron configuration, its density and melting and boiling points differ significantly from those of most other lanthanides. In 1878, the Swiss chemist Jean Charles Galissard de Marignac separated from the rare earth "erbia" another independent component, which he called "
ytterbia Ytterbium(III) oxide is the chemical compound with the formula Yb2O3. It is one of the more commonly encountered compounds of ytterbium. It has the "rare-earth C-type sesquioxide" structure which is related to the fluorite structure with one quart ...
", for
Ytterby Ytterby () is a village on the Swedish island of Resarö, in Vaxholm Municipality in the Stockholm archipelago. Today the residential area is dominated by suburban homes. The name of the village translates to "outer village". Ytterby is perh ...
, the village in
Sweden Sweden, formally the Kingdom of Sweden,The United Nations Group of Experts on Geographical Names states that the country's formal name is the Kingdom of SwedenUNGEGN World Geographical Names, Sweden./ref> is a Nordic country located on ...
near where he found the new component of
erbium Erbium is a chemical element with the symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element ...
. He suspected that ytterbia was a compound of a new element that he called "ytterbium" (in total, four elements were named after the village, the others being yttrium, terbium, and
erbium Erbium is a chemical element with the symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element ...
). In 1907, the new earth "lutecia" was separated from ytterbia, from which the element "lutecium" (now lutetium) was extracted by Georges Urbain, Carl Auer von Welsbach, and Charles James. After some discussion, Marignac's name "ytterbium" was retained. A relatively pure sample of the metal was not obtained until 1953. At present, ytterbium is mainly used as a
dopant A dopant, also called a doping agent, is a trace of impurity element that is introduced into a chemical material to alter its original electrical or optical properties. The amount of dopant necessary to cause changes is typically very low. When ...
of stainless steel or active laser media, and less often as a
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
source. Natural ytterbium is a mixture of seven stable isotopes, which altogether are present at concentrations of 0.3 parts per million. This element is mined in China, the United States, Brazil, and India in form of the minerals monazite,
euxenite Euxenite, or euxenite-(Y) (the official mineralogical name), is a brownish black mineral with a metallic luster. Chemistry It contains calcium, niobium, tantalum, cerium, titanium, yttrium, and typically uranium and thorium, with some other meta ...
, and
xenotime Xenotime is a rare-earth phosphate mineral, the major component of which is yttrium orthophosphate ( Y P O4). It forms a solid solution series with chernovite-(Y) ( Y As O4) and therefore may contain trace impurities of arsenic, as well as sili ...
. The ytterbium concentration is low because it is found only among many other rare-earth elements; moreover, it is among the least abundant. Once extracted and prepared, ytterbium is somewhat hazardous as an eye and skin irritant. The metal is a fire and explosion hazard.


Characteristics


Physical properties

Ytterbium is a soft, malleable and ductile
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
that displays a bright silvery luster when pure. It is a rare-earth element, and it is readily dissolved by the strong mineral acids. It
reacts ''React'' (from Spanish: ''Reacciona'') is a book by Rosa María Artal published in Spain in 2011 by Aguilar, which compiles articles by José Luis Sampedro, Baltasar Garzón, Federico Mayor Zaragoza, Javier Pérez de Albéniz, Javier López Facal ...
slowly with cold
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a ...
and it
oxidizes Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a d ...
slowly in air. Ytterbium has three
allotropes Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the ...
labeled by the Greek letters alpha, beta and gamma; their transformation temperatures are −13 ° C and 795 °C, although the exact transformation temperature depends on the
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
and stress. The beta allotrope (6.966 g/cm3) exists at room temperature, and it has a face-centered cubic
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystal, crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric pat ...
. The high-temperature gamma allotrope (6.57 g/cm3) has a body-centered cubic crystalline structure. The alpha allotrope (6.903 g/cm3) has a
hexagonal In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A '' regular hexagon'' has ...
crystalline structure and is stable at low temperatures. The beta allotrope has a metallic
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allow ...
at normal atmospheric pressure, but it becomes a
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
when exposed to a pressure of about 16,000
atmospheres The standard atmosphere (symbol: atm) is a unit of pressure defined as Pa. It is sometimes used as a ''reference pressure'' or ''standard pressure''. It is approximately equal to Earth's average atmospheric pressure at sea level. History The s ...
(1.6 
GPa Grading in education is the process of applying standardized measurements for varying levels of achievements in a course. Grades can be assigned as letters (usually A through F), as a range (for example, 1 to 6), as a percentage, or as a numbe ...
). Its electrical resistivity increases ten times upon compression to 39,000 atmospheres (3.9 GPa), but then drops to about 10% of its room-temperature resistivity at about 40,000 atm (4.0 GPa). In contrast with the other rare-earth metals, which usually have antiferromagnetic and/or
ferromagnetic Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
properties at low
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
s, ytterbium is paramagnetic at temperatures above 1.0
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and phys ...
. However, the alpha allotrope is diamagnetic. With a
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends ...
of 824 °C and a
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envir ...
of 1196 °C, ytterbium has the smallest liquid range of all the metals. Contrary to most other lanthanides, which have a close-packed hexagonal lattice, ytterbium crystallizes in the face-centered cubic system. Ytterbium has a density of 6.973 g/cm3, which is significantly lower than those of the neighboring lanthanides, thulium (9.32 g/cm3) and lutetium (9.841 g/cm3). Its melting and boiling points are also significantly lower than those of thulium and lutetium. This is due to the closed-shell electron configuration of ytterbium ( e4f14 6s2), which causes only the two 6s electrons to be available for metallic bonding (in contrast to the other lanthanides where three electrons are available) and increases ytterbium's
metallic radius Metallic bonding is a type of chemical bonding that arises from the electrostatic attractive force between conduction electrons (in the form of an electron cloud of delocalized electrons) and positively charged metal ions. It may be descr ...
.


Chemical properties

Ytterbium metal tarnishes slowly in air, taking on a golden or brown hue. Finely dispersed ytterbium readily oxidizes in air and under oxygen. Mixtures of powdered ytterbium with
polytetrafluoroethylene Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer of tetrafluoroethylene that has numerous applications. It is one of the best-known and widely applied PFAS. The commonly known brand name of PTFE-based composition is Teflon by Chemour ...
or hexachloroethane burn with a luminous emerald-green flame. Ytterbium reacts with
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
to form various
non-stoichiometric In chemistry, non-stoichiometric compounds are chemical compounds, almost always solid inorganic compounds, having elemental composition whose proportions cannot be represented by a ratio of small natural numbers (i.e. an empirical formula); mos ...
hydride In chemistry, a hydride is formally the anion of hydrogen( H−). The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of ...
s. Ytterbium dissolves slowly in water, but quickly in acids, liberating hydrogen gas. Ytterbium is quite electropositive, and it reacts slowly with cold water and quite quickly with hot water to form ytterbium(III) hydroxide: :2 Yb (s) + 6 H2O (l) → 2 Yb(OH)3 (aq) + 3 H2 (g) Ytterbium reacts with all the
halogen The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this group is ...
s: :2 Yb (s) + 3 F2 (g) → 2 YbF3 (s)
hite Hite or HITE may refer to: *HiteJinro, a South Korean brewery **Hite Brewery *Hite (surname) *Hite, California, former name of Hite Cove, California *Hite, Utah, a ghost town * HITE, an industrial estate in Pakistan See also *''Hite v. Fairfax ...
:2 Yb (s) + 3 Cl2 (g) → 2 YbCl3 (s)
hite Hite or HITE may refer to: *HiteJinro, a South Korean brewery **Hite Brewery *Hite (surname) *Hite, California, former name of Hite Cove, California *Hite, Utah, a ghost town * HITE, an industrial estate in Pakistan See also *''Hite v. Fairfax ...
:2 Yb (s) + 3 Br2 (g) → 2 YbBr3 (s)
hite Hite or HITE may refer to: *HiteJinro, a South Korean brewery **Hite Brewery *Hite (surname) *Hite, California, former name of Hite Cove, California *Hite, Utah, a ghost town * HITE, an industrial estate in Pakistan See also *''Hite v. Fairfax ...
:2 Yb (s) + 3 I2 (g) → 2 YbI3 (s)
hite Hite or HITE may refer to: *HiteJinro, a South Korean brewery **Hite Brewery *Hite (surname) *Hite, California, former name of Hite Cove, California *Hite, Utah, a ghost town * HITE, an industrial estate in Pakistan See also *''Hite v. Fairfax ...
The ytterbium(III) ion absorbs light in the near infrared range of wavelengths, but not in
visible light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 te ...
, so
ytterbia Ytterbium(III) oxide is the chemical compound with the formula Yb2O3. It is one of the more commonly encountered compounds of ytterbium. It has the "rare-earth C-type sesquioxide" structure which is related to the fluorite structure with one quart ...
, Yb2O3, is white in color and the salts of ytterbium are also colorless. Ytterbium dissolves readily in dilute
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formu ...
to form solutions that contain the colorless Yb(III) ions, which exist as nonahydrate complexes: :2 Yb (s) + 3 H2SO4 (aq) + 18 (l) → 2 b(H2O)9sup>3+ (aq) + 3 (aq) + 3 H2 (g)


Yb(II) vs. Yb(III)

Although usually trivalent, ytterbium readily forms divalent compounds. This behavior is unusual for
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yttr ...
s, which almost exclusively form compounds with an oxidation state of +3. The +2 state has a valence
electron configuration In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon atom ...
of 4''f''14 because the fully filled ''f''-shell gives more stability. The yellow-green ytterbium(II) ion is a very strong
reducing agent In chemistry, a reducing agent (also known as a reductant, reducer, or electron donor) is a chemical species that "donates" an electron to an (called the , , , or ). Examples of substances that are commonly reducing agents include the Earth meta ...
and decomposes water, releasing
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
gas, and thus only the colorless ytterbium(III) ion occurs in
aqueous solution An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would be re ...
. Samarium and thulium also behave this way in the +2 state, but
europium Europium is a chemical element with the symbol Eu and atomic number 63. Europium is the most reactive lanthanide by far, having to be stored under an inert fluid to protect it from atmospheric oxygen or moisture. Europium is also the softest lanth ...
(II) is stable in aqueous solution. Ytterbium metal behaves similarly to europium metal and the alkaline earth metals, dissolving in ammonia to form blue
electride An electride is an ionic compound in which an electron is the anion. Solutions of alkali metals in ammonia are electride salts. In the case of sodium, these blue solutions consist of a(NH3)6sup>+ and solvated electrons: :Na + 6 NH3 → a(N ...
salts.


Isotopes

Natural ytterbium is composed of seven stable
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
s: 168Yb, 170Yb, 171Yb, 172Yb, 173Yb, 174Yb, and 176Yb, with 174Yb being the most common, at 31.8% of the
natural abundance In physics, natural abundance (NA) refers to the abundance of isotopes of a chemical element as naturally found on a planet. The relative atomic mass (a weighted average, weighted by mole-fraction abundance figures) of these isotopes is the atomic ...
). 27 radioisotopes have been observed, with the most stable ones being 169Yb with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
of 32.0 days, 175Yb with a half-life of 4.18 days, and 166Yb with a half-life of 56.7 hours. All of the remaining
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
isotopes have half-lives that are less than two hours, and most of these have half-lives under 20 minutes. Ytterbium also has 12 meta states, with the most stable being 169mYb (''t''1/2 46 seconds). The isotopes of ytterbium range in atomic weight from 147.9674
atomic mass unit The dalton or unified atomic mass unit (symbols: Da or u) is a non-SI unit of mass widely used in physics and chemistry. It is defined as of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at ...
(u) for 148Yb to 180.9562 u for 181Yb. The primary
decay mode Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
of ytterbium isotopes lighter than the most abundant stable isotope, 174Yb, is
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Thi ...
, and the primary decay mode for those heavier than 174Yb is
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
. The primary
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( ...
s of ytterbium isotopes lighter than 174Yb are thulium isotopes, and the primary decay products of ytterbium isotopes with heavier than 174Yb are lutetium isotopes.


Occurrence

Ytterbium is found with other rare-earth elements in several rare
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. ( ...
s. It is most often recovered commercially from monazite sand (0.03% ytterbium). The element is also found in
euxenite Euxenite, or euxenite-(Y) (the official mineralogical name), is a brownish black mineral with a metallic luster. Chemistry It contains calcium, niobium, tantalum, cerium, titanium, yttrium, and typically uranium and thorium, with some other meta ...
and
xenotime Xenotime is a rare-earth phosphate mineral, the major component of which is yttrium orthophosphate ( Y P O4). It forms a solid solution series with chernovite-(Y) ( Y As O4) and therefore may contain trace impurities of arsenic, as well as sili ...
. The main mining areas are
China China, officially the People's Republic of China (PRC), is a country in East Asia. It is the world's most populous country, with a population exceeding 1.4 billion, slightly ahead of India. China spans the equivalent of five time zones and ...
, the
United States The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country primarily located in North America. It consists of 50 states, a federal district, five major unincorporated territorie ...
,
Brazil Brazil ( pt, Brasil; ), officially the Federative Republic of Brazil (Portuguese: ), is the largest country in both South America and Latin America. At and with over 217 million people, Brazil is the world's fifth-largest country by area ...
,
India India, officially the Republic of India (Hindi: ), is a country in South Asia. It is the seventh-largest country by area, the second-most populous country, and the most populous democracy in the world. Bounded by the Indian Ocean on the so ...
,
Sri Lanka Sri Lanka (, ; si, ශ්‍රී ලංකා, Śrī Laṅkā, translit-std=ISO (); ta, இலங்கை, Ilaṅkai, translit-std=ISO ()), formerly known as Ceylon and officially the Democratic Socialist Republic of Sri Lanka, is an ...
, and
Australia Australia, officially the Commonwealth of Australia, is a Sovereign state, sovereign country comprising the mainland of the Australia (continent), Australian continent, the island of Tasmania, and numerous List of islands of Australia, sma ...
. Reserves of ytterbium are estimated as one million
tonne The tonne ( or ; symbol: t) is a unit of mass equal to 1000  kilograms. It is a non-SI unit accepted for use with SI. It is also referred to as a metric ton to distinguish it from the non-metric units of the short ton ( United State ...
s. Ytterbium is normally difficult to separate from other rare earths, but
ion-exchange Ion exchange is a reversible interchange of one kind of ion present in an insoluble solid with another of like charge present in a solution surrounding the solid with the reaction being used especially for softening or making water demineralised, ...
and
solvent extraction A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for ...
techniques developed in the mid- to late 20th century have simplified separation. Compounds of ytterbium are rare and have not yet been well characterized. The abundance of ytterbium in the Earth's crust is about 3 mg/kg. As an even-numbered lanthanide, in accordance with the Oddo-Harkins rule, ytterbium is significantly more abundant than its immediate neighbors, thulium and lutetium, which occur in the same concentrate at levels of about 0.5% each. The world production of ytterbium is only about 50 tonnes per year, reflecting that it has few commercial applications. Microscopic traces of ytterbium are used as a
dopant A dopant, also called a doping agent, is a trace of impurity element that is introduced into a chemical material to alter its original electrical or optical properties. The amount of dopant necessary to cause changes is typically very low. When ...
in the Yb:YAG laser, a solid-state laser in which ytterbium is the element that undergoes
stimulated emission Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to th ...
of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
. Ytterbium is often the most common substitute in yttrium minerals. In very few known cases/occurrences ytterbium prevails over yttrium, as, e.g., in
xenotime Xenotime is a rare-earth phosphate mineral, the major component of which is yttrium orthophosphate ( Y P O4). It forms a solid solution series with chernovite-(Y) ( Y As O4) and therefore may contain trace impurities of arsenic, as well as sili ...
-(Yb). A report of native ytterbium from the Moon's regolith is known.


Production

It is relatively difficult to separate ytterbium from other lanthanides due to its similar properties. As a result, the process is somewhat long. First, minerals such as monazite or
xenotime Xenotime is a rare-earth phosphate mineral, the major component of which is yttrium orthophosphate ( Y P O4). It forms a solid solution series with chernovite-(Y) ( Y As O4) and therefore may contain trace impurities of arsenic, as well as sili ...
are dissolved into various acids, such as
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formu ...
. Ytterbium can then be separated from other lanthanides by ion exchange, as can other lanthanides. The solution is then applied to a
resin In polymer chemistry and materials science, resin is a solid or highly viscous substance of plant or synthetic origin that is typically convertible into polymers. Resins are usually mixtures of organic compounds. This article focuses on natu ...
, which different lanthanides bind in different matters. This is then dissolved using
complexing agent A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as ''ligands'' or complexing agents. Many m ...
s, and due to the different types of bonding exhibited by the different lanthanides, it is possible to isolate the compounds. Ytterbium is separated from other rare earths either by ion exchange or by reduction with sodium amalgam. In the latter method, a buffered acidic solution of trivalent rare earths is treated with molten sodium-mercury alloy, which reduces and dissolves Yb3+. The alloy is treated with hydrochloric acid. The metal is extracted from the solution as oxalate and converted to oxide by heating. The oxide is reduced to metal by heating with
lanthanum Lanthanum is a chemical element with the symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements between lantha ...
,
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
,
cerium Cerium is a chemical element with the symbol Ce and atomic number 58. Cerium is a soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it often shows the +3 o ...
or
zirconium Zirconium is a chemical element with the symbol Zr and atomic number 40. The name ''zirconium'' is taken from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian '' zargun'' (zircon; ''zar-gun'', ...
in high vacuum. The metal is purified by sublimation and collected over a condensed plate.


Compounds

The chemical behavior of ytterbium is similar to that of the rest of the
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yttr ...
s. Most ytterbium compounds are found in the +3 oxidation state, and its salts in this oxidation state are nearly colorless. Like
europium Europium is a chemical element with the symbol Eu and atomic number 63. Europium is the most reactive lanthanide by far, having to be stored under an inert fluid to protect it from atmospheric oxygen or moisture. Europium is also the softest lanth ...
, samarium, and thulium, the trihalides of ytterbium can be reduced to the dihalides by
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
,
zinc Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
dust, or by the addition of metallic ytterbium. The +2 oxidation state occurs only in solid compounds and reacts in some ways similarly to the alkaline earth metal compounds; for example, ytterbium(II) oxide (YbO) shows the same structure as
calcium oxide Calcium oxide (CaO), commonly known as quicklime or burnt lime, is a widely used chemical compound. It is a white, Caustic (substance), caustic, alkaline, crystalline solid at room temperature. The broadly used term "''lime (material), lime''" co ...
(CaO).


Halides

Ytterbium forms both dihalides and trihalides with the
halogen The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this group is ...
s
fluorine Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. As the most electronegative reactive element, it is extremely reacti ...
,
chlorine Chlorine is a chemical element with the Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate betwee ...
,
bromine Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest element in group 17 of the periodic table (halogens) and is a volatile red-brown liquid at room temperature that evaporates readily to form a simila ...
, and
iodine Iodine is a chemical element with the symbol I and atomic number 53. The heaviest of the stable halogens, it exists as a semi-lustrous, non-metallic solid at standard conditions that melts to form a deep violet liquid at , and boils to a vi ...
. The dihalides are susceptible to oxidation to the trihalides at room temperature and disproportionate to the trihalides and metallic ytterbium at high temperature: :3 YbX2 → 2 YbX3 + Yb (X = F, Cl, Br, I) Some ytterbium halides are used as
reagent In chemistry, a reagent ( ) or analytical reagent is a substance or compound added to a system to cause a chemical reaction, or test if one occurs. The terms ''reactant'' and ''reagent'' are often used interchangeably, but reactant specifies a ...
s in
organic synthesis Organic synthesis is a special branch of chemical synthesis and is concerned with the intentional construction of organic compounds. Organic molecules are often more complex than inorganic compounds, and their synthesis has developed into one o ...
. For example,
ytterbium(III) chloride Ytterbium(III) chloride (Ytterbium, YbChlorine, Cl3) is an inorganic chemical compound. It reacts with NiCl2 to form a very effective Catalysis, catalyst for the Reductive dechlorination, reductive dehalogenation of aryl halides. It is poisonous ...
(YbCl3) is a
Lewis acid A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any sp ...
and can be used as a
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
in the
Aldol In organic chemistry, an aldol describes a structural motif consisting of a 3-hydroxy ketone or 3-hydroxyaldehyde. Aldols are usually the product of aldol addition. When used alone, the term "aldol" may refer to 3-hydroxybutanal. Stereochemistr ...
and
Diels–Alder reaction In organic chemistry, the Diels–Alder reaction is a chemical reaction between a conjugated diene and a substituted alkene, commonly termed the dienophile, to form a substituted cyclohexene derivative. It is the prototypical example of a peric ...
s. Ytterbium(II) iodide (YbI2) may be used, like samarium(II) iodide, as a
reducing agent In chemistry, a reducing agent (also known as a reductant, reducer, or electron donor) is a chemical species that "donates" an electron to an (called the , , , or ). Examples of substances that are commonly reducing agents include the Earth meta ...
for coupling reactions.
Ytterbium(III) fluoride Ytterbium(III) fluoride () is an inorganic chemical compound A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chem ...
(YbF3) is used as an inert and non-toxic
tooth filling Dental restoration, dental fillings, or simply fillings are treatments used to restore the function, integrity, and morphology of missing tooth structure resulting from caries or external trauma as well as to the replacement of such structure sup ...
as it continuously releases
fluoride Fluoride (). According to this source, is a possible pronunciation in British English. is an inorganic, monatomic anion of fluorine, with the chemical formula (also written ), whose salts are typically white or colorless. Fluoride salts typ ...
ions, which are good for dental health, and is also a good
X-ray contrast agent Radiocontrast agents are substances used to enhance the visibility of internal structures in X-ray-based imaging techniques such as computed tomography (contrast CT), projectional radiography, and fluoroscopy. Radiocontrast agents are typically io ...
.Enghag, Per (2004). ''Encyclopedia of the elements: technical data, history, processing, applications.'' John Wiley & Sons,
p. 448


Oxides

Ytterbium reacts with oxygen to form ytterbium(III) oxide (Yb2O3), which crystallizes in the "rare-earth C-type sesquioxide" structure which is related to the fluorite structure with one quarter of the anions removed, leading to ytterbium atoms in two different six coordinate (non-octahedral) environments. Ytterbium(III) oxide can be reduced to ytterbium(II) oxide (YbO) with elemental ytterbium, which crystallizes in the same structure as
sodium chloride Sodium chloride , commonly known as salt (although sea salt also contains other chemical salts), is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. With molar masses of 22.99 and 35.45 g ...
.


Borides

Ytterbium dodecaboride (YbB12) is a crystalline material that has been studied to understand various electronic and structural properties of many chemically related substances. It is a Kondo insulator. It is a
quantum material Quantum materials is an umbrella term in condensed matter physics that encompasses all materials whose essential properties cannot be described in terms of semiclassical particles and low-level quantum mechanics. These are materials that present ...
; under normal conditions, the interior of the bulk crystal is an insulator whereas the surface is highly conductive. Among the
rare earth element The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides (yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous silv ...
s, ytterbium is one of the few that can form a stable dodecaboride, a property attributed to its comparatively small atomic radius.


History

Ytterbium was discovered by the Swiss chemist Jean Charles Galissard de Marignac in the year 1878. While examining samples of
gadolinite Gadolinite, sometimes known as ytterbite, is a silicate mineral consisting principally of the silicates of cerium, lanthanum, neodymium, yttrium, beryllium, and iron with the formula . It is called gadolinite-(Ce) or gadolinite-(Y), depending on ...
, Marignac found a new component in the earth then known as erbia, and he named it ytterbia, for
Ytterby Ytterby () is a village on the Swedish island of Resarö, in Vaxholm Municipality in the Stockholm archipelago. Today the residential area is dominated by suburban homes. The name of the village translates to "outer village". Ytterby is perh ...
, the
Swedish Swedish or ' may refer to: Anything from or related to Sweden, a country in Northern Europe. Or, specifically: * Swedish language, a North Germanic language spoken primarily in Sweden and Finland ** Swedish alphabet, the official alphabet used by ...
village near where he found the new component of erbium. Marignac suspected that ytterbia was a compound of a new element that he called "ytterbium". In 1907, the French chemist Georges Urbain separated Marignac's ytterbia into two components: neoytterbia and lutecia. Neoytterbia later became known as the element ytterbium, and lutecia became known as the element lutetium. The Austrian chemist Carl Auer von Welsbach independently isolated these elements from ytterbia at about the same time, but he called them aldebaranium and cassiopeium; the American chemist Charles James also independently isolated these elements at about the same time. Urbain and Welsbach accused each other of publishing results based on the other party. The Commission on Atomic Mass, consisting of
Frank Wigglesworth Clarke Frank Wigglesworth Clarke (March 19, 1847 – May 23, 1931) of Boston, Massachusetts, and Washington, D.C. was an American scientist and chemist. Sometimes known as the "Father of Geochemistry," Clarke is credited with determining the compositi ...
, Wilhelm Ostwald, and Georges Urbain, which was then responsible for the attribution of new element names, settled the dispute in 1909 by granting priority to Urbain and adopting his names as official ones, based on the fact that the separation of lutetium from Marignac's ytterbium was first described by Urbain. After Urbain's names were recognized, neoytterbium was reverted to ytterbium. The chemical and physical properties of ytterbium could not be determined with any precision until 1953, when the first nearly pure ytterbium metal was produced by using
ion-exchange Ion exchange is a reversible interchange of one kind of ion present in an insoluble solid with another of like charge present in a solution surrounding the solid with the reaction being used especially for softening or making water demineralised, ...
processes. The price of ytterbium was relatively stable between 1953 and 1998 at about US$1,000/kg.


Applications


Source of gamma rays

The 169Yb
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
(with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
of 32 days), which is created along with the short-lived 175Yb isotope (half-life 4.2 days) by
neutron activation Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emittin ...
during the irradiation of ytterbium in
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nu ...
s, has been used as a
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
source in portable
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
machines. Like X-rays, the
gamma rays A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
emitted by the source pass through soft tissues of the body, but are blocked by bones and other dense materials. Thus, small 169Yb samples (which emit gamma rays) act like tiny X-ray machines useful for
radiography Radiography is an imaging technique using X-rays, gamma rays, or similar ionizing radiation and non-ionizing radiation to view the internal form of an object. Applications of radiography include medical radiography ("diagnostic" and "therapeut ...
of small objects. Experiments show that radiographs taken with a 169Yb source are roughly equivalent to those taken with X-rays having energies between 250 and 350 keV. 169Yb is also used in
nuclear medicine Nuclear medicine or nucleology is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear imaging, in a sense, is "radiology done inside out" because it records radiation emitting ...
.


High-stability atomic clocks

Ytterbium clocks hold the record for stability with ticks stable to within less than two parts in 1 quintillion (). The clocks developed at the National Institute of Standards and Technology (NIST) rely on about 10,000 rare-earth atoms cooled to 10 microkelvin (10 millionths of a degree above
absolute zero Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibration ...
) and trapped in an
optical lattice An optical lattice is formed by the interference of counter-propagating laser beams, creating a spatially periodic polarization pattern. The resulting periodic potential may trap neutral atoms via the Stark shift. Atoms are cooled and congregat ...
—a series of pancake-shaped wells made of laser light. Another laser that "ticks" 518 trillion times per second provokes a transition between two energy levels in the atoms. The large number of atoms is key to the clocks' high stability. Visible light waves oscillate faster than microwaves, and therefore optical clocks can be more precise than
caesium Caesium (IUPAC spelling) (or cesium in American English) is a chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only five elemental metals that a ...
atomic clocks An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions betwee ...
. The
Physikalisch-Technische Bundesanstalt The Physikalisch-Technische Bundesanstalt (PTB) is the national metrology institute of the Federal Republic of Germany, with scientific and technical service tasks. It is a higher federal authority and a public-law institution directly under fed ...
is working on several such optical clocks. The model with one single ytterbium ion caught in an ion trap is highly accurate. The optical clock based on it is exact to 17 digits after the decimal point. A pair of experimental atomic clocks based on ytterbium atoms at the National Institute of Standards and Technology has set a record for stability. NIST physicists reported in the August 22, 2013 issue of Science Express that the ytterbium clocks' ticks are stable to within less than two parts in 1 quintillion (1 followed by 18 zeros), roughly 10 times better than the previous best published results for other atomic clocks. The clocks would be accurate within a second for a period comparable to the age of the universe.


Doping of stainless steel

Ytterbium can also be used as a
dopant A dopant, also called a doping agent, is a trace of impurity element that is introduced into a chemical material to alter its original electrical or optical properties. The amount of dopant necessary to cause changes is typically very low. When ...
to help improve the grain refinement, strength, and other mechanical properties of
stainless steel Stainless steel is an alloy of iron that is resistant to rusting and corrosion. It contains at least 11% chromium and may contain elements such as carbon, other nonmetals and metals to obtain other desired properties. Stainless steel's corros ...
. Some ytterbium
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility, ...
s have rarely been used in
dentistry Dentistry, also known as dental medicine and oral medicine, is the branch of medicine focused on the teeth, gums, and mouth. It consists of the study, diagnosis, prevention, management, and treatment of diseases, disorders, and conditions o ...
.


Ytterbium as dopant of active media

The Yb3+
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
is used as a doping material in active laser media, specifically in solid state lasers and
double clad fiber Double-clad fiber (DCF) is a class of optical fiber with a structure consisting of three layers of optical material instead of the usual two. The inner-most layer is called the ''Fiber optics#Principle of operation, core''. It is surrounded by t ...
lasers. Ytterbium lasers are highly efficient, have long lifetimes and can generate short pulses; ytterbium can also easily be incorporated into the material used to make the laser. Ytterbium lasers commonly radiate in the 1.06–1.12 
µm The micrometre ( international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American spelling), also commonly known as a micron, is a unit of length in the International System of Unit ...
band being optically pumped at wavelength 900 nm–1 µm, dependently on the host and application. The small quantum defect makes ytterbium a prospective dopant for efficient lasers and
power scaling Power scaling of a laser is increasing its output power without changing the geometry, shape, or principle of operation. Power scalability is considered an important advantage in a laser design. this means it can increase power without changing outs ...
. The kinetic of excitations in ytterbium-doped materials is simple and can be described within the concept of effective cross-sections; for most ytterbium-doped laser materials (as for many other optically pumped gain media), the
McCumber relation The McCumber relation (or McCumber theory) is a relationship between the effective cross-sections of absorption and emission of light in the physics of solid-state lasers.D.E.McCumber. Einstein relations connecting broadband emission and absorption ...
holds, although the application to the ytterbium-doped
composite materials A composite material (also called a composition material or shortened to composite, which is the common name) is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or ...
was under discussion. Usually, low concentrations of ytterbium are used. At high concentrations, the ytterbium-doped materials show
photodarkening Photodarkening is an optical effect observed in the interaction of laser radiation with amorphous media (glasses) in optical fibers. Until now, such creation of color centers was reported only in glass fibers. Photodarkening limits the density of e ...
(glass fibers) or even a switch to broadband emission (crystals and ceramics) instead of efficient laser action. This effect may be related with not only overheating, but also with conditions of
charge compensation Charge or charged may refer to: Arts, entertainment, and media Films * ''Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * ''Charge!!'', an album by The Aqua ...
at high concentrations of ytterbium ions. Much progress has been made in the power scaling lasers and amplifiers produced with ytterbium (Yb) doped optical fibers. Power levels have increased from the 1 kW regimes due to the advancements in components as well as the Yb-doped fibers. Fabrication of Low NA, Large Mode Area fibers enable achievement of near perfect beam qualities (M2<1.1) at power levels of 1.5 kW to greater than 2 kW at ~1064 nm in a broadband configuration. Ytterbium-doped LMA fibers also have the advantages of a larger mode field diameter, which negates the impacts of nonlinear effects such as stimulated
Brillouin scattering Brillouin scattering (also known as Brillouin light scattering or BLS), named after Léon Brillouin, refers to the interaction of light with the material waves in a medium (e.g. electrostriction and magnetostriction). It is mediated by the refractiv ...
and stimulated
Raman scattering Raman scattering or the Raman effect () is the inelastic scattering of photons by matter, meaning that there is both an exchange of energy and a change in the light's direction. Typically this effect involves vibrational energy being gained by a ...
, which limit the achievement of higher power levels, and provide a distinct advantage over single mode ytterbium-doped fibers. In order to achieve even higher power levels in ytterbium-based fiber systems. all factors of the fiber must be considered. These can be achieved only via optimization of all the ytterbium fiber parameters, ranging from the core background losses to the geometrical properties, in order to reduce the splice losses within the cavity. Power scaling also requires optimization of matching passive fibers within the optical cavity. The optimization of the ytterbium-doped glass itself through host glass modification of various dopants also plays a large part in reducing the background loss of the glass, improvements in slope efficiency of the fiber, and improved photodarkening performance, all of which contribute to increased power levels in 1 µm systems.


Ion Qubits for Quantum Computing

The charged ion 171Yb+ is used in trapped-ion qubits in
quantum computing Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though ...
. Entangling
gates Gates is the plural of gate, a point of entry to a space which is enclosed by walls. It may also refer to: People * Gates (surname), various people with the last name * Gates Brown (1939-2013), American Major League Baseball player * Gates McFadde ...
, such as the
Mølmer–Sørensen gate In quantum computing, Mølmer–Sørensen gate scheme (or MS gate) refers to an implementation procedure for various multi- qubit quantum logic gates used mostly in trapped ion quantum computing. This procedure is based on the original proposition ...
, have been achieved by addressing the ions with mode-locked pulse lasers.


Others

Ytterbium metal increases its electrical resistivity when subjected to high stresses. This property is used in stress gauges to monitor ground deformations from earthquakes and explosions. Currently, ytterbium is being investigated as a possible replacement for
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
in high density pyrotechnic payloads for kinematic infrared decoy flares. As ytterbium(III) oxide has a significantly higher emissivity in the infrared range than
magnesium oxide Magnesium oxide ( Mg O), or magnesia, is a white hygroscopic solid mineral that occurs naturally as periclase and is a source of magnesium (see also oxide). It has an empirical formula of MgO and consists of a lattice of Mg2+ ions and O2− ions ...
, a higher radiant intensity is obtained with ytterbium-based payloads in comparison to those commonly based on magnesium/Teflon/Viton (MTV).


Precautions

Although ytterbium is fairly stable chemically, it is stored in airtight containers and in an inert atmosphere such as a nitrogen-filled dry box to protect it from air and moisture. All compounds of ytterbium are treated as highly
toxic Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subst ...
, although studies appear to indicate that the danger is minimal. However, ytterbium compounds cause irritation to human skin and eyes, and some might be
teratogenic Teratology is the study of abnormalities of physiological development in organisms during their life span. It is a sub-discipline in medical genetics which focuses on the classification of congenital abnormalities in dysmorphology. The related t ...
. Metallic ytterbium dust can spontaneously combust, and the resulting fumes are hazardous. Ytterbium fires cannot be extinguished using water, and only dry chemical class D fire extinguishers can extinguish the fires.


References


Further reading

*''Guide to the Elements – Revised Edition'', Albert Stwertka, (Oxford University Press; 1998)


External links


It's Elemental – Ytterbium
*
Encyclopedia of Geochemistry - Ytterbium
{{Good article Chemical elements Chemical elements with face-centered cubic structure Lanthanides Suspected teratogens