HOME

TheInfoList



OR:

X-ray absorption fine structure (XAFS) is a specific structure observed in
X-ray absorption spectroscopy X-ray absorption spectroscopy (XAS) is a widely used technique for determining the local geometric and/or electronic structure of matter. The experiment is usually performed at synchrotron radiation facilities, which provide intense and tunable ...
(XAS). By analyzing the XAFS, information can be acquired on the local structure and on the unoccupied local electronic states.


Atomic spectra

The atomic X-ray absorption spectrum (XAS) of a
core-level Core electrons are the electrons in an atom that are not valence electrons and do not participate in chemical bonding. The nucleus and the core electrons of an atom form the atomic core. Core electrons are tightly bound to the nucleus. Therefore, un ...
in an absorbing
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
is separated into states in the discrete part of the spectrum called "bounds final states" or "
Rydberg states The Rydberg states of an atom or molecule are electronically excited states with energies that follow the Rydberg formula as they converge on an ionic state with an ionization energy. Although the Rydberg formula was developed to describe atomic e ...
" below the ionization potential (IP) and "states in the continuum" part of the spectrum above the ionization potential due to excitations of the photoelectron in the vacuum. Above the IP the absorption cross section attenuates gradually with the X-ray energy. Following early experimental and theoretical works in the thirties, in the sixties using synchrotron radiation at the National Bureau of Standards it was established that the broad asymmetric absorption peaks are due to
Fano resonance In physics, a Fano resonance is a type of resonant scattering phenomenon that gives rise to an asymmetric line-shape. Interference between a background and a resonant scattering process produces the asymmetric line-shape. It is named after Italia ...
s above the atomic ionization potential where the final states are many body quasi-bound states (i.e., a doubly excited atom) degenerate with the continuum.


Spectra of molecules and condensed matter

The XAS spectra of condensed matter are usually divided in three energy regions:


Edge region

The edge region usually extends in a range of few eV around the absorption edge. The spectral features in the edge region i) in good metals are excitations to final delocalized states above the Fermi level; ii) in insulators are core excitons below the ionization potential; iii) in molecules are electronic transitions to the first unoccupied molecular levels above the
chemical potential In thermodynamics, the chemical potential of a species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potential of a species ...
in the initial states which are shifted into the discrete part of the core absorption spectrum by the Coulomb interaction with the core hole. Multi-electron excitations and configuration interaction between many body final states dominate the edge region in strongly correlated metals and insulators. For many years the edge region was referred to as the “Kossel structure” but now it is known as "absorption edge region" since the Kossel structure refers only to unoccupied molecular final states which is a correct description only for few particular cases: molecules and strongly disordered systems.


X-ray Absorption Near Edge Structure

The XANES energy regionD. C. Koningsberger, R. Prins (eds) A. Bianconi "X-ray absorption: Principles, applications, techniques of EXAFS, SEXAFS and XANES" (Chemical Analysis 92), Wiley, New York (1988) pp 573-662 extends between the edge region and the EXAFS region over a 50-100 eV energy range around the core level x-ray absorption threshold. Before 1980 the XANES region was wrongly assigned to different final states: a) unoccupied total density of states, or b) unoccupied molecular orbitals (kossel structure) or c) unoccupied atomic orbitals or d) low energy EXAFS oscillations. In the seventies, using synchrotron radiation in Frascati and Stanford synchrotron sources, it was experimentally shown that the features in this energy region are due to multiple scattering
resonances Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillat ...
of the photoelectron in a nanocluster of variable size. Antonio Bianconi in 1980 invented the acronym XANES to indicate the spectral region dominated by multiple scattering
resonances Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillat ...
of the photoelectron in the soft x-ray range and in the hard X-ray range. In the XANES energy range the kinetic energy of the photoelectron in the final state is between few eV and 50-100 eV. In this regime the photoelectron has a strong scattering amplitude by neighboring atoms in molecules and condensed matter, its wavelength is larger than interatomic distances, its mean free path could be smaller than one nanometer and finally the lifetime of the excited state is in the order of femtoseconds. The XANES spectral features are described by full multiple scattering theory proposed in the early seventies. Therefore, the key step for XANES interpretation is the determination of the size of the atomic cluster of neighbor atoms, where the final states are confined, which could range from 0.2 nm to 2 nm in different systems. This energy region has been called later (in 1982) also near-edge X-ray absorption fine structure (
NEXAFS X-ray absorption near edge structure (XANES), also known as near edge X-ray absorption fine structure (NEXAFS), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the p ...
), which is synonymous with XANES. During more than 20 years the XANES interpretation has been object of discussion but recently there is agreement that the final states are "multiple scattering resonances" and many body final states play an important role.


Intermediate region

There is an intermediate region between the XANES and EXAFS regions where low n-body distribution functions play a key role.


Extended X-ray absorption fine structure

The oscillatory structure extending for hundreds of
electron volt In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacuum. ...
s past the edges was called the “Kronig structure” after the scientist,
Ralph Kronig Ralph Kronig (10 March 1904 – 16 November 1995) was a German physicist. He is noted for the discovery of particle spin and for his theory of X-ray absorption spectroscopy. His theories include the Kronig–Penney model, the Coster–Kronig tra ...
, who assigned this structure in the high energy range ( i.e., for a kinetic energy range - larger than 100 eV - of the phoelectron in the weak scattering regime) to the single
scattering Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including ...
of the excited
photoelectron The photoelectric effect is the emission of electrons when electromagnetic radiation, such as light, hits a material. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, and solid sta ...
by neighbouring atoms in molecules and condensed matter.''X-ray Absorption: principles, applications and techniques of EXAFS, SEXAFS and XANES'', edited by D.C. Koeningsberger, R. Prins, John Wiley & Sons 1988.Principles and Applications of EXAFS, Chapter 10 in Handbook of Synchrotron Radiation, pp 995–1014. E. A. Stern and S. M. Heald, E. E. Koch, ed., North-Holland, 1983.B.-K. Teo, ''EXAFS: basic principles and data analysis'', Springer 1986 This regime was called
EXAFS Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray ab ...
in 1971 by Sayers, Stern and Lytle. and it developed only after the use of intense synchrotron radiation sources.


Applications of x-ray absorption spectroscopy

X-ray absorption edge spectroscopy corresponds to the transition from a core-level to an unoccupied orbital or band and mainly reflects the electronic unoccupied states. EXAFS, resulting from the interference in the single scattering process of the photoelectron scattered by surrounding atoms, provides information on the local structure. Information on the geometry of the local structure is provided by the analysis of the multiple
scattering Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including ...
peaks in the XANES spectra. The XAFS acronym has been later introduced to indicate the sum of the XANES and EXAFS spectra.


See also

*
SEXAFS Surface-extended X-ray absorption fine structure (SEXAFS) is the surface-sensitive equivalent of the EXAFS technique. This technique involves the illumination of the sample by high-intensity X-ray beams from a synchrotron and monitoring their pho ...
*
EXAFS Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray ab ...
*
XANES X-ray absorption near edge structure (XANES), also known as near edge X-ray absorption fine structure (NEXAFS), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the p ...


References


External links

* M. Newville,
Fundamentals of XAFS
' * S. Bare,
XANES measurements and interpretation
' * B. Ravel,
A practical introduction to multiple scattering
' {{DEFAULTSORT:X-Ray Absorption Fine Structure X-ray absorption spectroscopy fr:Spectrométrie d'absorption it:EXAFS