HOME

TheInfoList



OR:

A wind profiler is a type of weather observing equipment that uses
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, Marine radar, ships, spacecraft, guided missiles, motor v ...
or sound waves ( SODAR) to detect the
wind Wind is the natural movement of air or other gases relative to a planet's surface. Winds occur on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heating of land surfaces and lasting a few ...
speed In everyday use and in kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quant ...
and direction at various elevations above the ground. Readings are made at each kilometer above sea level, up to the extent of the troposphere (i.e., between 8 and 17 km above mean sea level). Above this level there is inadequate water vapor present to produce a radar "bounce." The data synthesized from wind direction and speed is very useful to meteorological forecasting and timely reporting for flight planning. A twelve-hour history of data is available through
NOAA The National Oceanic and Atmospheric Administration (abbreviated as NOAA ) is an United States scientific and regulatory agency within the United States Department of Commerce that forecasts weather, monitors oceanic and atmospheric conditio ...
websites.


Principle

In a typical implementation, the radar or sodar can sample along each of five beams: one is aimed vertically to measure vertical velocity, and four are tilted off vertical and oriented orthogonal to one another to measure the horizontal components of the air's motion. A profiler's ability to measure winds is based on the assumption that the turbulent eddies that induce scattering are carried along by the mean wind. The energy scattered by these eddies and received by the profiler is
orders of magnitude An order of magnitude is an approximation of the logarithm of a value relative to some contextually understood reference value, usually 10, interpreted as the base of the logarithm and the representative of values of magnitude one. Logarithmic dis ...
smaller than the energy transmitted. However, if sufficient samples can be obtained, then the amplitude of the energy scattered by these eddies can be clearly identified above the background noise level, then the mean wind speed and direction within the volume being sampled can be determined. The radial components measured by the tilted beams are the vector sum of the horizontal motion of the air toward or away from the radar and any vertical motion present in the beam. Using appropriate trigonometry, the three-dimensional meteorological velocity components (u,v,w) and wind speed and wind direction are calculated from the radial velocities with corrections for vertical motions.


Radar wind profiler

Pulse-Doppler radar A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and ...
wind profilers operate using electromagnetic (EM) signals to remotely sense winds aloft. The radar transmits an
electromagnetic In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
pulse along each of the
antenna Antenna ( antennas or antennae) may refer to: Science and engineering * Antenna (radio), also known as an aerial, a transducer designed to transmit or receive electromagnetic (e.g., TV or radio) waves * Antennae Galaxies, the name of two collid ...
's pointing directions. A UHF profiler includes subsystems to control the radar's transmitter, receiver, signal processing, and Radio Acoustic Sounding System (RASS), if provided, as well as data telemetry and remote control. The duration of the transmission determines the length of the pulse emitted by the antenna, which in turn corresponds to the volume of air illuminated (in electrical terms) by the radar beam. Small amounts of the transmitted energy are scattered back (referred to as
backscatter In physics, backscatter (or backscattering) is the reflection of waves, particles, or signals back to the direction from which they came. It is usually a diffuse reflection due to scattering, as opposed to specular reflection as from a mirror, a ...
ing) toward and received by the radar. Delays of fixed intervals are built into the data processing system so that the radar receives scattered energy from discrete altitudes, referred to as range gates. The Doppler frequency shift of the backscattered energy is determined, and then used to calculate the velocity of the air toward or away from the radar along each beam as a function of altitude. The source of the backscattered energy (radar “targets”) is small-scale turbulent fluctuations that induce irregularities in the radio
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, ...
of the atmosphere. The radar is most sensitive to scattering by turbulent eddies whose spatial scale is ½ the wavelength of the radar, or approximately 16 centimeters (cm) for a UHF profiler. A boundary-layer radar wind profiler can be configured to compute averaged wind profiles for periods ranging from a few minutes to an hour. Boundary-layer radar wind profilers are often configured to sample in more than one mode. For example, in a “low mode,” the pulse of energy transmitted by the profiler may be 60 m in length. The pulse length determines the depth of the column of air being sampled and thus the vertical resolution of the data. In a “high mode,” the pulse length is increased, usually to 100 m or greater. The longer pulse length means that more energy is being transmitted for each sample, which improves the
signal-to-noise ratio Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in de ...
(SNR) of the data. Using a longer pulse length increases the depth of the sample volume and thus decreases the vertical resolution in the data. The greater energy output of the high mode increases the maximum altitude to which the radar wind profiler can sample, but at the expense of coarser vertical resolution and an increase in the altitude at which the first winds are measured. When radar wind profilers are operated in multiple modes, the data are often combined into a single overlapping data set to simplify postprocessing and data validation procedures. Radar wind profilers may also have additional uses, for example in a biological context to complement large-scale bird monitoring schemes.


Sodar wind profiler

Alternatively, a wind profiler may use sound waves to measure wind speed at various heights above the ground, and the thermodynamic structure of the lower layer of the
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A ...
. These sodars can be divided in mono-static system using the same antenna for transmitting and receiving, and bi-static system using separate antennas. The difference between the two antenna systems determines whether atmospheric scattering is by temperature fluctuations (in mono-static systems), or by both temperature and wind velocity fluctuations (in bi-static systems). Mono-static antenna systems can be divided further into two categories: those using multiple axis, individual antennas and those using a single
phased array In antenna theory, a phased array usually means an electronically scanned array, a computer-controlled array of antennas which creates a beam of radio waves that can be electronically steered to point in different directions without moving th ...
antenna. The multiple-axis systems generally use three individual antennas aimed in specific directions to steer the acoustic beam. One antenna is generally aimed vertically, and the other two are tilted slightly from the vertical at an orthogonal angle. Each of the individual antennas may use a single transducer focused into a
parabolic reflector A parabolic (or paraboloid or paraboloidal) reflector (or dish or mirror) is a reflective surface used to collect or project energy such as light, sound, or radio waves. Its shape is part of a circular paraboloid, that is, the surface genera ...
to form a
parabolic loudspeaker A parabolic loudspeaker is a loudspeaker which seeks to focus its sound in coherent plane waves either by reflecting sound output from a speaker driver to a parabolic reflector aimed at the target audience, or by arraying drivers on a parabolic su ...
, or an array of
speaker driver An electrodynamic speaker driver, often called simply a speaker driver when the type is implicit, is an individual transducer that converts an electrical audio signal to sound waves. While the term is sometimes used interchangeably with the ...
s and horns (
transducer A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and con ...
s) all transmitting in-phase to form a single beam. Both the tilt angle from the vertical and the azimuth angle of each antenna are fixed when the system is set up. The vertical range of sodars is approximately 0.2 to 2 kilometers (km) and is a function of frequency, power output, atmospheric stability,
turbulence In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between ...
, and, most importantly, the noise environment in which a sodar is operated. Operating frequencies range from less than 1000 Hz to over 4000 Hz, with power levels up to several hundred watts. Due to the attenuation characteristics of the atmosphere, high power, lower frequency sodars will generally produce greater height coverage. Some sodars can be operated in different modes to better match vertical resolution and range to the application. This is accomplished through a relaxation between pulse length and maximum altitude.


References


External links


Official NOAA wind profiler search page
See real time (and 12-hour history) graphic displays of wind direction and speed from ground level up to 17 km above sea level (at 1 km intervals). Click on any star or dot, then click on "get plot" at left. {{Meteorological equipment Meteorological instrumentation and equipment Weather radars Radar meteorology Atmospheric sounding