Wickerbill
   HOME

TheInfoList



OR:

The Gurney flap (or wickerbill) is a small tab projecting from the trailing edge of a wing. Typically it is set at a
right angle In geometry and trigonometry, a right angle is an angle of exactly 90 Degree (angle), degrees or radians corresponding to a quarter turn (geometry), turn. If a Line (mathematics)#Ray, ray is placed so that its endpoint is on a line and the ad ...
to the pressure-side surface of the
airfoil An airfoil (American English) or aerofoil (British English) is the cross-sectional shape of an object whose motion through a gas is capable of generating significant lift, such as a wing, a sail, or the blades of propeller, rotor, or turbine. ...
and projects 1% to 2% of the wing
chord Chord may refer to: * Chord (music), an aggregate of musical pitches sounded simultaneously ** Guitar chord a chord played on a guitar, which has a particular tuning * Chord (geometry), a line segment joining two points on a curve * Chord ( ...
. This trailing edge device can improve the performance of a simple airfoil to nearly the same level as a complex high-performance design. The device operates by increasing pressure on the pressure side, decreasing pressure on the suction side, and helping the boundary layer flow stay attached all the way to the trailing edge on the suction side of the airfoil. Common applications occur in auto racing, helicopter
horizontal stabilizer A tailplane, also known as a horizontal stabiliser, is a small lifting surface located on the tail (empennage) behind the main lifting surfaces of a fixed-wing aircraft as well as other non-fixed-wing aircraft such as helicopters and gyroplan ...
s, and aircraft where high lift is essential, such as banner-towing airplanes. It is named for its inventor and developer, American race car driver Dan Gurney.


History

The original application, pioneered by American automobile racing icon Dan Gurney (who was challenged to do so by fellow American racer Bobby Unser), was a right-angle piece of sheet metal, rigidly fixed to the top trailing edge of the rear wing on his open-wheel racing cars of the early 1970s. The device was installed pointing upward to increase downforce generated by the wing, improving traction. He field-tested it and found that it allowed a car to negotiate turns at higher speed, while also achieving higher speed in the straight sections of the track. The first application of the flap was in 1971, after Gurney retired from driving and began managing his own racing team full-time. His driver Bobby Unser had been testing a new Len Terry early CAD-Cam designed car at
Phoenix International Raceway Phoenix Raceway is a 1-mile, low-banked tri-oval race track located in Avondale, Arizona, near Phoenix. The motorsport track opened in 1964 and currently hosts two NASCAR race weekends annually including the final championship race since 2020. P ...
and was unhappy with the car's performance on the track. Gurney needed to do something to restore his driver's confidence before the race and recalled experiments conducted in the 1950s by certain racing teams with spoilers affixed to the rear of the bodywork to cancel lift (at that level of development, the spoilers were not thought of as potential performance enhancers, merely devices to cancel out destabilizing and potentially deadly aerodynamic lift). Gurney decided to try adding a "spoiler" to the top trailing edge of the rear wing. The device was fabricated and fitted in under an hour, but Unser's test laps with the modified wing turned in equally poor times. When Unser was able to speak to Gurney in confidence, he disclosed that the lap times with the new wing were slowed because it was now producing so much downforce that the car was understeering. All that was needed was to balance this by adding downforce in front. Unser realized the value of this breakthrough immediately and wanted to conceal it from the competition, including his brother Al. Not wanting to call attention to the devices, Gurney left them out in the open. To conceal his true intent, Gurney deceived inquisitive competitors by telling them the blunted trailing edge was intended to prevent injury and damage when pushing the car by hand. Some copied the design and some of them even attempted to improve upon it by pointing the flap downward, which actually hurt performance. Gurney was able to use the device in racing for several years before its true purpose became known. Later, he discussed his ideas with aerodynamicist and wing designer Bob Liebeck of
Douglas Aircraft Company The Douglas Aircraft Company was an American aerospace manufacturer based in Southern California. It was founded in 1921 by Donald Wills Douglas Sr. and later merged with McDonnell Aircraft in 1967 to form McDonnell Douglas; it then operated as ...
. Liebeck tested the device, which he later named the "Gurney flap" and confirmed Gurney’s field test results using a 1.25% chord flap on a Newman symmetric airfoil. His 1976 AIAA paper (76-406) "On the design of subsonic airfoils for high lift" introduced the concept to the aerodynamics community. Gurney assigned his patent rights to Douglas Aircraft, but the device was not patentable, since it was substantially similar to a movable microflap patented by E. F. Zaparka in 1931, ten days before Gurney was born. Similar devices were also tested by Gruschwitz and Schrenk and presented in Berlin in 1932.


Theory of operation

The Gurney flap increases the maximum lift coefficient (''C''L,max), decreases the
angle of attack In fluid dynamics, angle of attack (AOA, α, or \alpha) is the angle between a reference line on a body (often the chord line of an airfoil) and the vector representing the relative motion between the body and the fluid through which it is m ...
for zero lift (α0), and increases the nosedown
pitching moment In aerodynamics, the pitching moment on an airfoil is the moment (or torque) produced by the aerodynamic force on the airfoil if that aerodynamic force is considered to be applied, not at the center of pressure, but at the aerodynamic center o ...
(''C''M), which is consistent with an increase in camber of the airfoil. It also typically increases the drag coefficient (''C''d), especially at low angles of attack, although for thick airfoils, a reduction in drag has been reported. A net benefit in overall lift-to-drag ratio is possible if the flap is sized appropriately, based on the boundary layer thickness. The Gurney flap increases lift by altering the
Kutta condition The Kutta condition is a principle in steady-flow fluid dynamics, especially aerodynamics, that is applicable to solid bodies with sharp corners, such as the trailing edges of airfoils. It is named for German mathematician and aerodynamicist Mar ...
at the trailing edge. The wake behind the flap is a pair of counter-rotating vortices that are alternately shed in a von Kármán vortex street. In addition to these spanwise vortices shed behind the flap, chordwise vortices shed from in front of the flap become important at high angles of attack. The increased pressure on the lower surface ahead of the flap means the upper surface suction can be reduced while producing the same lift.


Helicopter applications

Gurney flaps have found wide application on helicopter horizontal stabilizers, because they operate over a very wide range of both positive and negative angles of attack. At one extreme, in a high-powered climb, the negative angle of attack of the horizontal stabilizer can be as high as −25°; at the other extreme, in autorotation, it may be +15°. As a result, at least half of all modern helicopters built in the West have them in one form or another. The Gurney flap was first applied to the
Sikorsky S-76 The Sikorsky S-76 is a medium-size commercial utility helicopter designed and produced by the American helicopter manufacturer Sikorsky Aircraft. It is the company's first helicopter specifically developed for the civilian market. The S-76 w ...
B variant, when flight testing revealed the horizontal stabilizer from the original S-76 not providing sufficient lift. Engineers fitted a Gurney flap to the NACA 2412 inverted airfoil to resolve the problem without redesigning the stabilizer from scratch. A Gurney flap was also fitted to the Bell JetRanger to correct an
angle of incidence Angle of incidence is a measure of deviation of something from "straight on" and may refer to: * Angle of incidence (aerodynamics), angle between a wing chord and the longitudinal axis, as distinct from angle of attack In fluid dynamics, ang ...
problem in the design that was too difficult to correct directly. The Eurocopter AS355 TwinStar helicopter uses a double Gurney flap that projects from both surfaces of the vertical stabilizer. This is used to correct a problem with lift reversal in thick airfoil sections at low angles of attack. The double Gurney flap reduces the control input required to make the transition from hover to forward flight.


See also

* Lift (force)


References


External links

* the original 1935 Zaparka patent * {{DEFAULTSORT:Gurney Flap Auto racing equipment Aircraft wing components 1971 introductions Aircraft wing design