In mathematics, a Whittaker function is a special solution of Whittaker's equation, a modified form of the
confluent hypergeometric equation
In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular ...
introduced by to make the formulas involving the solutions more symmetric. More generally, introduced Whittaker
functions of
reductive group
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group ''G'' over a perfect field is reductive if it has a representation with finite kernel which is a direct ...
s over
local field
In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compact t ...
s, where the functions studied by Whittaker are essentially the case where the local field is the real numbers and the group is SL
2(R).
Whittaker's equation is
:
It has a regular singular point at 0 and an irregular singular point at ∞.
Two solutions are given by the Whittaker functions ''M''
κ,μ(''z''), ''W''
κ,μ(''z''), defined in terms of Kummer's
confluent hypergeometric functions
In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular ...
''M'' and ''U'' by
:
:
The Whittaker function
is the same as those with opposite values of , in other words considered as a function of at fixed and it is
even function
In mathematics, even functions and odd functions are functions which satisfy particular symmetry relations, with respect to taking additive inverses. They are important in many areas of mathematical analysis, especially the theory of power seri ...
s. When and are real, the functions give real values for real and imaginary values of . These functions of play a role in so-called
Kummer space Kummer is a German surname. Notable people with the surname include:
* Bernhard Kummer (1897–1962), German Germanist
* Clare Kummer (1873—1958), American composer, lyricist and playwright
*Clarence Kummer (1899–1930), American jockey
* Chris ...
s.
[ Sections 55-57.]
Whittaker functions appear as coefficients of certain representations of the group SL
2(R), called
Whittaker model
In representation theory, a branch of mathematics, the Whittaker model is a realization of a representation of a reductive algebraic group such as ''GL''2 over a finite or local or global field on a space of functions on the group. It is named aft ...
s.
References
*
*.
*.
*
**
*
*.
*.
*
Further reading
*
*
*
*
*
*
*
*
*
*
*
* {{Cite journal, last1=Frenkel, first1=E., last2=Gaitsgory, first2=D., last3=Kazhdan, first3=D., last4=Vilonen, first4=K., date=1998, title=Geometric realization of Whittaker functions and the Langlands conjecture, url=https://www.ams.org/jams/1998-11-02/S0894-0347-98-00260-4/, journal=Journal of the American Mathematical Society, language=en, volume=11, issue=2, pages=451–484, doi=10.1090/S0894-0347-98-00260-4, s2cid=13221400, issn=0894-0347, doi-access=free
Special hypergeometric functions
E. T. Whittaker
Special functions