Whitehead Problem
   HOME

TheInfoList



OR:

In
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
, a branch of
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''a ...
, the Whitehead problem is the following question:
Saharon Shelah Saharon Shelah ( he, שהרן שלח; born July 3, 1945) is an Israeli mathematician. He is a professor of mathematics at the Hebrew University of Jerusalem and Rutgers University in New Jersey. Biography Shelah was born in Jerusalem on July 3, ...
proved that Whitehead's problem is
independent Independent or Independents may refer to: Arts, entertainment, and media Artist groups * Independents (artist group), a group of modernist painters based in the New Hope, Pennsylvania, area of the United States during the early 1930s * Independ ...
of ZFC, the standard axioms of set theory.


Refinement

Assume that ''A'' is an abelian group such that every short
exact sequence An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context o ...
:0\rightarrow\mathbb\rightarrow B\rightarrow A\rightarrow 0 must split if ''B'' is also abelian. The Whitehead problem then asks: must ''A'' be free? This splitting requirement is equivalent to the condition Ext1(''A'', Z) = 0. Abelian groups ''A'' satisfying this condition are sometimes called Whitehead groups, so Whitehead's problem asks: is every Whitehead group free? It should be mentioned that if this condition is strengthened by requiring that the exact sequence :0\rightarrow C\rightarrow B\rightarrow A\rightarrow 0 must split for any abelian group ''C'', then it is well known that this is equivalent to ''A'' being free. ''Caution'': The converse of Whitehead's problem, namely that every free abelian group is Whitehead, is a well known group-theoretical fact. Some authors call ''Whitehead group'' only a ''non-free'' group ''A'' satisfying Ext1(''A'', Z) = 0. Whitehead's problem then asks: do Whitehead groups exist?


Shelah's proof

Saharon Shelah showed that, given the canonical ZFC axiom system, the problem is independent of the usual axioms of set theory. More precisely, he showed that: * If every set is constructible, then every Whitehead group is free; * If
Martin's axiom In the mathematical field of set theory, Martin's axiom, introduced by Donald A. Martin and Robert M. Solovay, is a statement that is independent of the usual axioms of ZFC set theory. It is implied by the continuum hypothesis, but it is consist ...
and the negation of the
continuum hypothesis In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that or equivalently, that In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent to ...
both hold, then there is a non-free Whitehead group. Since the
consistency In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent ...
of ZFC implies the consistency of both of the following: *The axiom of constructibility (which asserts that all sets are constructible); *Martin's axiom plus the negation of the continuum hypothesis, Whitehead's problem cannot be resolved in ZFC.


Discussion

J. H. C. Whitehead, motivated by the
second Cousin problem In mathematics, the Cousin problems are two questions in several complex variables, concerning the existence of meromorphic functions that are specified in terms of local data. They were introduced in special cases by Pierre Cousin in 1895. They ...
, first posed the problem in the 1950s. Stein answered the question in the affirmative for
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
groups. Progress for larger groups was slow, and the problem was considered an important one in
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary a ...
for some years. Shelah's result was completely unexpected. While the existence of undecidable statements had been known since Gödel's incompleteness theorem of 1931, previous examples of undecidable statements (such as the
continuum hypothesis In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that or equivalently, that In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent to ...
) had all been in pure
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
. The Whitehead problem was the first purely algebraic problem to be proved undecidable. Shelah later showed that the Whitehead problem remains undecidable even if one assumes the continuum hypothesis. The Whitehead conjecture is true if all sets are constructible. That this and other statements about uncountable abelian groups are provably independent of ZFC shows that the theory of such groups is very sensitive to the assumed underlying
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
.


See also

*
Free abelian group In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subse ...
*
Whitehead torsion In geometric topology, a field within mathematics, the obstruction to a homotopy equivalence f\colon X \to Y of finite CW-complexes being a simple homotopy equivalence is its Whitehead torsion \tau(f) which is an element in the Whitehead group \ope ...
*
List of statements undecidable in ZFC The mathematical statements discussed below are independent of ZFC (the canonical axiomatic set theory of contemporary mathematics, consisting of the Zermelo–Fraenkel axioms plus the axiom of choice), assuming that ZFC is consistent. A stateme ...
*
Statements true in L The axiom of constructibility is a possible axiom for set theory in mathematics that asserts that every set is constructible. The axiom is usually written as ''V'' = ''L'', where ''V'' and ''L'' denote the von Neumann universe and the constructib ...


References


Further reading

* An expository account of Shelah's proof. * {{DEFAULTSORT:Whitehead Problem Independence results Group theory Mathematical problems