HOME

TheInfoList



OR:

In
signal processing Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing ''signals'', such as audio signal processing, sound, image processing, images, and scientific measurements. Signal processing techniq ...
, white noise is a random signal having equal intensity at different
frequencies Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
, giving it a constant power spectral density. The term is used, with this or similar meanings, in many scientific and technical disciplines, including
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, acoustical engineering,
telecommunications Telecommunication is the transmission of information by various types of technologies over wire, radio, optical, or other electromagnetic systems. It has its origin in the desire of humans for communication over a distance greater than that fe ...
, and statistical forecasting. White noise refers to a statistical model for signals and signal sources, rather than to any specific signal. White noise draws its name from
white light White is the lightest color and is achromatic (having no hue). It is the color of objects such as snow, chalk, and milk, and is the opposite of black. White objects fully reflect and scatter all the visible wavelengths of light. White on ...
, although light that appears white generally does not have a flat power spectral density over the visible band. In
discrete time In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled. Discrete time Discrete time views values of variables as occurring at distinct, separate "po ...
, white noise is a discrete signal whose samples are regarded as a sequence of serially uncorrelated
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
s with zero
mean There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value (magnitude and sign) of a given data set. For a data set, the ''arithme ...
and finite
variance In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers ...
; a single realization of white noise is a random shock. Depending on the context, one may also require that the samples be
independent Independent or Independents may refer to: Arts, entertainment, and media Artist groups * Independents (artist group), a group of modernist painters based in the New Hope, Pennsylvania, area of the United States during the early 1930s * Independ ...
and have identical
probability distribution In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon i ...
(in other words
independent and identically distributed random variables In probability theory and statistics, a collection of random variables is independent and identically distributed if each random variable has the same probability distribution as the others and all are mutually independent. This property is us ...
are the simplest representation of white noise). In particular, if each sample has a
normal distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu ...
with zero mean, the signal is said to be
additive white Gaussian noise Additive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics: * ''Additive'' because it is added to any nois ...
. The samples of a white noise signal may be sequential in time, or arranged along one or more spatial dimensions. In digital image processing, the pixels of a ''white noise image'' are typically arranged in a rectangular grid, and are assumed to be independent random variables with
uniform probability distribution In probability theory and statistics, the continuous uniform distribution or rectangular distribution is a family of symmetric probability distributions. The distribution describes an experiment where there is an arbitrary outcome that lies betw ...
over some interval. The concept can be defined also for signals spread over more complicated domains, such as a sphere or a torus. An ''infinite-bandwidth white noise signal'' is a purely theoretical construction. The bandwidth of white noise is limited in practice by the mechanism of noise generation, by the transmission medium and by finite observation capabilities. Thus, random signals are considered "white noise" if they are observed to have a flat spectrum over the range of frequencies that are relevant to the context. For an
audio signal An audio signal is a representation of sound, typically using either a changing level of electrical voltage for analog signals, or a series of binary numbers for digital signals. Audio signals have frequencies in the audio frequency range of r ...
, the relevant range is the band of audible sound frequencies (between 20 and 20,000 Hz). Such a signal is heard by the human ear as a ''hissing sound'', resembling the /h/ sound in a sustained aspiration. On the other hand, the "sh" sound in "ash" is a colored noise because it has a formant structure. In music and
acoustics Acoustics is a branch of physics that deals with the study of mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician ...
, the term "white noise" may be used for any signal that has a similar hissing sound. The term white noise is sometimes used in the context of phylogenetically based statistical methods to refer to a lack of phylogenetic pattern in comparative data. It is sometimes used analogously in nontechnical contexts to mean "random talk without meaningful contents". Claire Shipman (2005), ''
Good Morning America ''Good Morning America'' (often abbreviated as ''GMA'') is an American morning television program that is broadcast on ABC. It debuted on November 3, 1975, and first expanded to weekends with the debut of a Sunday edition on January 3, 1993. Th ...
'': "The political
rhetoric Rhetoric () is the art of persuasion, which along with grammar and logic (or dialectic), is one of the three ancient arts of discourse. Rhetoric aims to study the techniques writers or speakers utilize to inform, persuade, or motivate parti ...
on Social Security is white noise." Said on
ABC ABC are the first three letters of the Latin script known as the alphabet. ABC or abc may also refer to: Arts, entertainment, and media Broadcasting * American Broadcasting Company, a commercial U.S. TV broadcaster ** Disney–ABC Television ...
's ''
Good Morning America ''Good Morning America'' (often abbreviated as ''GMA'') is an American morning television program that is broadcast on ABC. It debuted on November 3, 1975, and first expanded to weekends with the debut of a Sunday edition on January 3, 1993. Th ...
'' TV show, January 11, 2005.


Statistical properties

Any distribution of values is possible (although it must have zero
DC component DC, D.C., D/C, Dc, or dc may refer to: Places * Washington, D.C. (District of Columbia), the capital and the federal territory of the United States * Bogotá, Distrito Capital, the capital city of Colombia * Dubai City, as distinct from the ...
). Even a binary signal which can only take on the values 1 or 0 will be white if the sequence is statistically uncorrelated. Noise having a continuous distribution, such as a
normal distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu ...
, can of course be white. It is often incorrectly assumed that Gaussian noise (i.e., noise with a Gaussian amplitude distributionsee
normal distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu ...
) necessarily refers to white noise, yet neither property implies the other. Gaussianity refers to the probability distribution with respect to the value, in this context the probability of the signal falling within any particular range of amplitudes, while the term 'white' refers to the way the signal power is distributed (i.e., independently) over time or among frequencies. White noise is the generalized mean-square derivative of the Wiener process or Brownian motion. A generalization to random elements on infinite dimensional spaces, such as random fields, is the
white noise measure In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert space ...
.


Practical applications


Music

White noise is commonly used in the production of electronic music, usually either directly or as an input for a filter to create other types of noise signal. It is used extensively in
audio synthesis A synthesizer (also spelled synthesiser) is an electronic musical instrument that generates audio signals. Synthesizers typically create sounds by generating Waveform, waveforms through methods including subtractive synthesis, additive synth ...
, typically to recreate percussive instruments such as
cymbal A cymbal is a common percussion instrument. Often used in pairs, cymbals consist of thin, normally round plates of various alloys. The majority of cymbals are of indefinite pitch, although small disc-shaped cymbals based on ancient designs soun ...
s or
snare drum The snare (or side drum) is a percussion instrument that produces a sharp staccato sound when the head is struck with a drum stick, due to the use of a series of stiff wires held under tension against the lower skin. Snare drums are often used ...
s which have high noise content in their frequency domain. A simple example of white noise is a nonexistent radio station (static).


Electronics engineering

White noise is also used to obtain the
impulse response In signal processing and control theory, the impulse response, or impulse response function (IRF), of a dynamic system is its output when presented with a brief input signal, called an Dirac delta function, impulse (). More generally, an impulse ...
of an electrical circuit, in particular of amplifiers and other audio equipment. It is not used for testing loudspeakers as its spectrum contains too great an amount of high-frequency content. Pink noise, which differs from white noise in that it has equal energy in each octave, is used for testing transducers such as loudspeakers and microphones.


Computing

White noise is used as the basis of some random number generators. For example,
Random.org Random.org (stylized as RANDOM.ORG) is a website that produces random numbers based on atmospheric noise. In addition to generating random numbers in a specified range and subject to a specified probability distribution, which is the most commo ...
uses a system of atmospheric antennae to generate random digit patterns from white noise.


Tinnitus treatment

White noise is a common synthetic noise source used for sound masking by a tinnitus masker.
White noise machine A white noise machine is a device that produces a noise that calms the listener, which in many cases sounds like a rushing waterfall or wind blowing through trees, and other serene or nature-like sounds. Often such devices do not produce actual wh ...
s and other white noise sources are sold as privacy enhancers and sleep aids (see
music and sleep Music and sleep involves the listening of music in order to improve sleep quality or improve sleep onset insomnia in adults (for infant use of music and sleep, see lullaby). This process can be either self-prescribed or under the guidance of a musi ...
) and to mask tinnitus. The Marpac Sleep-Mate was the first domestic use white noise machine built in 1962 by traveling salesman Jim Buckwalter. Alternatively, the use of an FM radio tuned to unused frequencies ("static") is a simpler and more cost-effective source of white noise. However, white noise generated from a common commercial radio receiver tuned to an unused frequency is extremely vulnerable to being contaminated with spurious signals, such as adjacent radio stations, harmonics from non-adjacent radio stations, electrical equipment in the vicinity of the receiving antenna causing interference, or even atmospheric events such as solar flares and especially lightning. There is evidence that white noise exposure therapies may induce maladaptive changes in the brain that degrade neurological health and compromise cognition.


Work environment

The effects of white noise upon cognitive function are mixed. Recently, a small study found that white noise background stimulation improves cognitive functioning among secondary students with attention deficit hyperactivity disorder (ADHD), while decreasing performance of non-ADHD students. Other work indicates it is effective in improving the mood and performance of workers by masking background office noise, but decreases cognitive performance in complex card sorting tasks. Similarly, an experiment was carried out on sixty-six healthy participants to observe the benefits of using white noise in a learning environment. The experiment involved the participants identifying different images whilst having different sounds in the background. Overall the experiment showed that white noise does in fact have benefits in relation to learning. The experiments showed that white noise improved the participants' learning abilities and their recognition memory slightly.


Mathematical definitions


White noise vector

A random vector (that is, a partially indeterminate process that produces vectors of real numbers) is said to be a white noise vector or white random vector if its components each have a
probability distribution In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon i ...
with zero mean and finite
variance In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers ...
, and are statistically independent: that is, their
joint probability distribution Given two random variables that are defined on the same probability space, the joint probability distribution is the corresponding probability distribution on all possible pairs of outputs. The joint distribution can just as well be considered ...
must be the product of the distributions of the individual components. Jeffrey A. Fessler (1998),
On Transformations of Random Vectors.
' Technical report 314, Dept. of Electrical Engineering and Computer Science, Univ. of Michigan. (
PDF Portable Document Format (PDF), standardized as ISO 32000, is a file format developed by Adobe in 1992 to present documents, including text formatting and images, in a manner independent of application software, hardware, and operating systems. ...
)
A necessary (but, in general, not sufficient) condition for statistical independence of two variables is that they be statistically uncorrelated; that is, their covariance is zero. Therefore, the
covariance matrix In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of ...
''R'' of the components of a white noise vector ''w'' with ''n'' elements must be an ''n'' by ''n'' diagonal matrix, where each diagonal element ''Rii'' is the
variance In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers ...
of component ''wi''; and the
correlation In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics ...
matrix must be the ''n'' by ''n'' identity matrix. If, in addition to being independent, every variable in ''w'' also has a
normal distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu ...
with zero mean and the same variance \sigma^2, ''w'' is said to be a Gaussian white noise vector. In that case, the joint distribution of ''w'' is a multivariate normal distribution; the independence between the variables then implies that the distribution has spherical symmetry in ''n''-dimensional space. Therefore, any orthogonal transformation of the vector will result in a Gaussian white random vector. In particular, under most types of discrete Fourier transform, such as FFT and
Hartley Hartley may refer to: Places Australia *Hartley, New South Wales *Hartley, South Australia **Electoral district of Hartley, a state electoral district Canada *Hartley Bay, British Columbia United Kingdom *Hartley, Cumbria *Hartley, Plymou ...
, the transform ''W'' of ''w'' will be a Gaussian white noise vector, too; that is, the ''n'' Fourier coefficients of ''w'' will be independent Gaussian variables with zero mean and the same variance \sigma^2. The power spectrum ''P'' of a random vector ''w'' can be defined as the expected value of the
squared modulus In mathematics, a square is the result of multiplication, multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as exponentiation, raising to the power 2 (number), 2, and is denoted by a ...
of each coefficient of its Fourier transform ''W'', that is, ''Pi'' = E(, ''Wi'', 2). Under that definition, a Gaussian white noise vector will have a perfectly flat power spectrum, with ''Pi'' = ''σ''2 for all ''i''. If ''w'' is a white random vector, but not a Gaussian one, its Fourier coefficients ''Wi'' will not be completely independent of each other; although for large ''n'' and common probability distributions the dependencies are very subtle, and their pairwise correlations can be assumed to be zero. Often the weaker condition "statistically uncorrelated" is used in the definition of white noise, instead of "statistically independent". However, some of the commonly expected properties of white noise (such as flat power spectrum) may not hold for this weaker version. Under this assumption, the stricter version can be referred to explicitly as independent white noise vector.Eric Zivot and Jiahui Wang (2006)
Modeling Financial Time Series with S-PLUS
Second Edition. (
PDF Portable Document Format (PDF), standardized as ISO 32000, is a file format developed by Adobe in 1992 to present documents, including text formatting and images, in a manner independent of application software, hardware, and operating systems. ...
)
Other authors use strongly white and weakly white instead.
Francis X. Diebold Francis X. Diebold (born November 12, 1959) is an American economist known for his work in predictive econometric modeling, financial econometrics, and macroeconometrics. He earned both his B.S. and Ph.D. degrees at the University of Pennsylvani ...
(2007),
Elements of Forecasting
'' 4th edition. (
PDF Portable Document Format (PDF), standardized as ISO 32000, is a file format developed by Adobe in 1992 to present documents, including text formatting and images, in a manner independent of application software, hardware, and operating systems. ...
)
An example of a random vector that is "Gaussian white noise" in the weak but not in the strong sense is x= _1,x_2/math> where x_1 is a normal random variable with zero mean, and x_2 is equal to +x_1 or to -x_1, with equal probability. These two variables are uncorrelated and individually normally distributed, but they are not jointly normally distributed and are not independent. If x is rotated by 45 degrees, its two components will still be uncorrelated, but their distribution will no longer be normal. In some situations one may relax the definition by allowing each component of a white random vector w to have non-zero expected value \mu. In
image processing An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensiona ...
especially, where samples are typically restricted to positive values, one often takes \mu to be one half of the maximum sample value. In that case, the Fourier coefficient W_0 corresponding to the zero-frequency component (essentially, the average of the w_i) will also have a non-zero expected value \mu\sqrt; and the power spectrum P will be flat only over the non-zero frequencies.


Discrete-time white noise

A discrete-time
stochastic process In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appea ...
W(n) is a generalization of random vectors with a finite number of components to infinitely many components. A discrete-time stochastic process W(n) is called white noise if its mean does not depend on the time n and is equal to zero, i.e. \operatorname
(n) A thumb signal, usually described as a thumbs-up or thumbs-down, is a common hand gesture achieved by a closed fist (hand), fist held with the thumb extended upward or downward in approval or disapproval, respectively. These gestures have becom ...
= 0 and if the autocorrelation function R_(n) = \operatorname
(k+n)W(k) K, or k, is the eleventh letter in the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''kay'' (pronounced ), plural ''kays''. The letter K u ...
/math> has a nonzero value only for n = 0, i.e. R_(n) = \sigma^2 \delta(n).


Continuous-time white noise

In order to define the notion of "white noise" in the theory of
continuous-time In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled. Discrete time Discrete time views values of variables as occurring at distinct, separate "po ...
signals, one must replace the concept of a "random vector" by a continuous-time random signal; that is, a random process that generates a function w of a real-valued parameter t. Such a process is said to be white noise in the strongest sense if the value w(t) for any time t is a random variable that is statistically independent of its entire history before t. A weaker definition requires independence only between the values w(t_1) and w(t_2) at every pair of distinct times t_1 and t_2. An even weaker definition requires only that such pairs w(t_1) and w(t_2) be uncorrelated.
''White noise process''
By Econterms via About.com. Accessed on 2013-02-12.
As in the discrete case, some authors adopt the weaker definition for "white noise", and use the qualifier independent to refer to either of the stronger definitions. Others use weakly white and strongly white to distinguish between them. However, a precise definition of these concepts is not trivial, because some quantities that are finite sums in the finite discrete case must be replaced by integrals that may not converge. Indeed, the set of all possible instances of a signal w is no longer a finite-dimensional space \mathbb^n, but an infinite-dimensional
function space In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set into a vect ...
. Moreover, by any definition a white noise signal w would have to be essentially discontinuous at every point; therefore even the simplest operations on w, like integration over a finite interval, require advanced mathematical machinery. Some authors require each value w(t) to be a real-valued random variable with expectation \mu and some finite variance \sigma^2. Then the covariance \mathrm(w(t_1)\cdot w(t_2)) between the values at two times t_1 and t_2 is well-defined: it is zero if the times are distinct, and \sigma^2 if they are equal. However, by this definition, the integral : W_ = \int_a^ w(t)\, dt over any interval with positive width r would be simply the width times the expectation: r\mu. This property would render the concept inadequate as a model of physical "white noise" signals. Therefore, most authors define the signal w indirectly by specifying non-zero values for the integrals of w(t) and , w(t), ^2 over any interval ,a+r/math>, as a function of its width r. In this approach, however, the value of w(t) at an isolated time cannot be defined as a real-valued random variable. Also the covariance \mathrm(w(t_1)\cdot w(t_2)) becomes infinite when t_1=t_2; and the
autocorrelation Autocorrelation, sometimes known as serial correlation in the discrete time case, is the correlation of a signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations of a random variable ...
function \mathrm(t_1,t_2) must be defined as N \delta(t_1-t_2), where N is some real constant and \delta is Dirac's "function". In this approach, one usually specifies that the integral W_I of w(t) over an interval I= ,b/math> is a real random variable with normal distribution, zero mean, and variance (b-a)\sigma^2; and also that the covariance \mathrm(W_I\cdot W_J) of the integrals W_I, W_J is r\sigma^2, where r is the width of the intersection I\cap J of the two intervals I,J. This model is called a Gaussian white noise signal (or process). In the mathematical field known as
white noise analysis In probability theory, a branch of mathematics, white noise analysis, otherwise known as Hida calculus, is a framework for infinite-dimensional and stochastic calculus, based on the Gaussian white noise probability space, to be compared with Mallia ...
, a Gaussian white noise w is defined as a stochastic tempered distribution, i.e. a random variable with values in the space \mathcal S'(\mathbb R) of
tempered distributions Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to derivative, differentiate functions whose de ...
. Analogous to the case for finite-dimensional random vectors, a probability law on the infinite-dimensional space \mathcal S'(\mathbb R) can be defined via its characteristic function (existence and uniqueness are guaranteed by an extension of the Bochner–Minlos theorem, which goes under the name Bochner–Minlos–Sazanov theorem); analogously to the case of the multivariate normal distribution X \sim \mathcal N_n (\mu , \Sigma ), which has characteristic function : \forall k \in \mathbb R^n: \quad \mathrm(\mathrm e^) = \mathrm e^ , the white noise w : \Omega \to \mathcal S'(\mathbb R) must satisfy : \forall \varphi \in \mathcal S (\mathbb R) : \quad \mathrm(\mathrm e^) = \mathrm e^, where \langle w, \varphi \rangle is the natural pairing of the tempered distribution w(\omega) with the Schwartz function \varphi, taken scenariowise for \omega \in \Omega, and \, \varphi \, _2^2 = \int_ \vert \varphi (x) \vert^2\,\mathrm d x .


Mathematical applications


Time series analysis and regression

In
statistics Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of ...
and econometrics one often assumes that an observed series of data values is the sum of a series of values generated by a
deterministic Determinism is a philosophical view, where all events are determined completely by previously existing causes. Deterministic theories throughout the history of philosophy have developed from diverse and sometimes overlapping motives and consi ...
linear process, depending on certain independent (explanatory) variables, and on a series of random noise values. Then regression analysis is used to infer the parameters of the model process from the observed data, e.g. by
ordinary least squares In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one effects of a linear function of a set of explanatory variables) by the prin ...
, and to test the null hypothesis that each of the parameters is zero against the alternative hypothesis that it is non-zero. Hypothesis testing typically assumes that the noise values are mutually uncorrelated with zero mean and have the same Gaussian probability distributionin other words, that the noise is Gaussian white (not just white). If there is non-zero correlation between the noise values underlying different observations then the estimated model parameters are still unbiased, but estimates of their uncertainties (such as
confidence interval In frequentist statistics, a confidence interval (CI) is a range of estimates for an unknown parameter. A confidence interval is computed at a designated ''confidence level''; the 95% confidence level is most common, but other levels, such as 9 ...
s) will be biased (not accurate on average). This is also true if the noise is
heteroskedastic In statistics, a sequence (or a vector) of random variables is homoscedastic () if all its random variables have the same finite variance. This is also known as homogeneity of variance. The complementary notion is called heteroscedasticity. The s ...
that is, if it has different variances for different data points. Alternatively, in the subset of regression analysis known as time series analysis there are often no explanatory variables other than the past values of the variable being modeled (the
dependent variable Dependent and independent variables are variables in mathematical modeling, statistical modeling and experimental sciences. Dependent variables receive this name because, in an experiment, their values are studied under the supposition or demand ...
). In this case the noise process is often modeled as a moving average process, in which the current value of the dependent variable depends on current and past values of a sequential white noise process.


Random vector transformations

These two ideas are crucial in applications such as channel estimation and channel equalization in communications and
audio Audio most commonly refers to sound, as it is transmitted in signal form. It may also refer to: Sound *Audio signal, an electrical representation of sound *Audio frequency, a frequency in the audio spectrum *Digital audio, representation of sound ...
. These concepts are also used in data compression. In particular, by a suitable linear transformation (a
coloring transformation Coloring or colouring may refer to: * Color, or the act of changing the color of an object ** Coloring, the act of adding color to the pages of a coloring book ** Coloring, the act of adding color to comic book pages, where the person's job title ...
), a white random vector can be used to produce a "non-white" random vector (that is, a list of random variables) whose elements have a prescribed
covariance matrix In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of ...
. Conversely, a random vector with known covariance matrix can be transformed into a white random vector by a suitable
whitening transformation A whitening transformation or sphering transformation is a linear transformation that transforms a vector of random variables with a known covariance matrix into a set of new variables whose covariance is the identity matrix, meaning that they ar ...
.


Generation

White noise may be generated digitally with a
digital signal processor A digital signal processor (DSP) is a specialized microprocessor chip, with its architecture optimized for the operational needs of digital signal processing. DSPs are fabricated on MOS integrated circuit chips. They are widely used in audio si ...
, microprocessor, or
microcontroller A microcontroller (MCU for ''microcontroller unit'', often also MC, UC, or μC) is a small computer on a single VLSI integrated circuit (IC) chip. A microcontroller contains one or more CPUs (processor cores) along with memory and programmable i ...
. Generating white noise typically entails feeding an appropriate stream of random numbers to a digital-to-analog converter. The quality of the white noise will depend on the quality of the algorithm used.


Informal use

The term is sometimes used as a
colloquialism Colloquialism (), also called colloquial language, everyday language or general parlance, is the style (sociolinguistics), linguistic style used for casual (informal) communication. It is the most common functional style of speech, the idiom norm ...
to describe a backdrop of ambient sound, creating an indistinct or seamless commotion. Following are some examples: *Chatter from multiple conversations within the acoustics of a confined space. *The
pleonastic Pleonasm (; , ) is Redundancy (linguistics), redundancy in linguistic expression, such as "black darkness" or "burning fire". It is a manifestation of Tautology (language), tautology by traditional rhetorical criteria and might be considered a fa ...
jargon used by politicians to mask a point that they don't want noticed. * Music that is disagreeable, harsh, dissonant or discordant with no
melody A melody (from Greek language, Greek μελῳδία, ''melōidía'', "singing, chanting"), also tune, voice or line, is a Linearity#Music, linear succession of musical tones that the listener perceives as a single entity. In its most liter ...
. The term can also be used metaphorically, as in the novel '' White Noise'' (1985) by Don DeLillo which explores the symptoms of
modern culture Modernity, a topic in the humanities and social sciences, is both a historical period (the modern era) and the ensemble of particular socio-cultural norms, attitudes and practices that arose in the wake of the Renaissancein the " Age of Rea ...
that came together so as to make it difficult for an individual to actualize their ideas and personality.


See also


References


External links

{{DEFAULTSORT:White Noise Noise (electronics) Statistical signal processing Data compression Sound Acoustics