Weyl–von Neumann Theorem
   HOME

TheInfoList



OR:

In mathematics, the Weyl–von Neumann theorem is a result in
operator theory In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators ...
due to Hermann Weyl and
John von Neumann John von Neumann (; hu, Neumann János Lajos, ; December 28, 1903 – February 8, 1957) was a Hungarian-American mathematician, physicist, computer scientist, engineer and polymath. He was regarded as having perhaps the widest cove ...
. It states that, after the addition of a
compact operator In functional analysis, a branch of mathematics, a compact operator is a linear operator T: X \to Y, where X,Y are normed vector spaces, with the property that T maps bounded subsets of X to relatively compact subsets of Y (subsets with compact c ...
() or
Hilbert–Schmidt operator In mathematics, a Hilbert–Schmidt operator, named after David Hilbert and Erhard Schmidt, is a bounded operator A \colon H \to H that acts on a Hilbert space H and has finite Hilbert–Schmidt norm \, A\, ^2_ \ \stackrel\ \sum_ \, Ae_i\, ...
() of arbitrarily small norm, a bounded
self-adjoint operator In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map ''A'' (from ''V'' to its ...
or
unitary operator In functional analysis, a unitary operator is a surjective bounded operator on a Hilbert space that preserves the inner product. Unitary operators are usually taken as operating ''on'' a Hilbert space, but the same notion serves to define the co ...
on a Hilbert space is conjugate by a unitary operator to a diagonal operator. The results are subsumed in later generalizations for bounded
normal operator In mathematics, especially functional analysis, a normal operator on a complex Hilbert space ''H'' is a continuous linear operator ''N'' : ''H'' → ''H'' that commutes with its hermitian adjoint ''N*'', that is: ''NN*'' = ''N*N''. Normal opera ...
s due to David Berg (1971, compact perturbation) and Dan-Virgil Voiculescu (1979, Hilbert–Schmidt perturbation). The theorem and its generalizations were one of the starting points of operator K-homology, developed first by Lawrence G. Brown, Ronald Douglas and Peter Fillmore and, in greater generality, by Gennadi Kasparov. In 1958 Kuroda showed that the Weyl–von Neumann theorem is also true if the Hilbert–Schmidt class is replaced by any Schatten class ''S''''p'' with ''p'' ≠ 1. For ''S''1, the trace-class operators, the situation is quite different. The Kato–Rosenblum theorem, proved in 1957 using scattering theory, states that if two bounded self-adjoint operators differ by a trace-class operator, then their absolutely continuous parts are unitarily equivalent. In particular if a self-adjoint operator has absolutely continuous spectrum, no perturbation of it by a trace-class operator can be unitarily equivalent to a diagonal operator.


References

* * * * * * * * * Operator theory Theorems in functional analysis K-theory {{mathanalysis-stub