Wetland Reed
   HOME

TheInfoList



OR:

A wetland is a distinct ecosystem that is
flooded A flood is an overflow of water ( or rarely other fluids) that submerges land that is usually dry. In the sense of "flowing water", the word may also be applied to the inflow of the tide. Floods are an area of study of the discipline hydrolog ...
or saturated by water, either permanently (for years or decades) or seasonally (for weeks or months). Flooding results in oxygen-free ( anoxic) processes prevailing, especially in the soils.
/ref> The primary factor that distinguishes wetlands from terrestrial land forms or Body of water, water bodies is the characteristic vegetation of
aquatic plants Aquatic plants are plants that have adapted to living in aquatic environments (saltwater or freshwater). They are also referred to as hydrophytes or macrophytes to distinguish them from algae and other microphytes. A macrophyte is a plant that ...
, adapted to the unique anoxic hydric soils. Wetlands are considered among the most biologically diverse of all ecosystems, serving as home to a wide range of plant and animal species. Methods for assessing wetland functions, wetland ecological health, and general wetland condition have been developed for many regions of the world. These methods have contributed to
wetland conservation Wetland conservation is aimed at protecting and preserving areas where water exists at or near the Earth's surface, such as swamps, marshes and bogs. Wetlands cover at least six per cent of the Earth and have become a focal issue for conservation ...
partly by raising public awareness of the functions some wetlands provide. Wetlands occur naturally on every continent. The water in wetlands is either
freshwater Fresh water or freshwater is any naturally occurring liquid or frozen water containing low concentrations of dissolved salts and other total dissolved solids. Although the term specifically excludes seawater and brackish water, it does include ...
, brackish or saltwater. The main wetland types are classified based on the dominant plants and/or the source of the water. For example, marshes are wetlands dominated by
emergent vegetation Aquatic plants are plants that have adapted to living in aquatic environments (saltwater or freshwater). They are also referred to as hydrophytes or macrophytes to distinguish them from algae and other microphytes. A macrophyte is a plant that g ...
such as reeds, cattails and sedges;
swamp A swamp is a forested wetland.Keddy, P.A. 2010. Wetland Ecology: Principles and Conservation (2nd edition). Cambridge University Press, Cambridge, UK. 497 p. Swamps are considered to be transition zones because both land and water play a role in ...
s are ones dominated by woody vegetation such as trees and
shrub A shrub (often also called a bush) is a small-to-medium-sized perennial woody plant. Unlike herbaceous plants, shrubs have persistent woody stems above the ground. Shrubs can be either deciduous or evergreen. They are distinguished from trees ...
s (although reed swamps in Europe are dominated by reeds, not trees). Examples of wetlands classified by their sources of water include tidal wetlands ( oceanic tides), estuaries (mixed tidal and river waters), floodplains (excess water from overflowed rivers or lakes),
spring Spring(s) may refer to: Common uses * Spring (season), a season of the year * Spring (device), a mechanical device that stores energy * Spring (hydrology), a natural source of water * Spring (mathematics), a geometric surface in the shape of a ...
s, seeps and fens ( groundwater discharge out onto the surface), and
bog A bog or bogland is a wetland that accumulates peat as a deposit of dead plant materials often mosses, typically sphagnum moss. It is one of the four main types of wetlands. Other names for bogs include mire, mosses, quagmire, and muskeg; a ...
s and vernal ponds ( rainfall or
meltwater Meltwater is water released by the melting of snow or ice, including glacial ice, tabular icebergs and ice shelves over oceans. Meltwater is often found in the ablation zone of glaciers, where the rate of snow cover is reducing. Meltwater can be ...
). Some wetlands have multiple types of plants and are fed by multiple sources of water, making them difficult to classify. The world's largest wetlands include the Amazon River basin, the West Siberian Plain, the Pantanal in South America, and the Sundarbans in the Ganges-
Brahmaputra The Brahmaputra is a trans-boundary river which flows through Tibet, northeast India, and Bangladesh. It is also known as the Yarlung Tsangpo in Tibetan, the Siang/Dihang River in Arunachali, Luit in Assamese, and Jamuna River in Bangla. It ...
delta. Wetlands contribute a number of functions that benefit people. These are called ecosystem services and include water purification,
groundwater replenishment Groundwater recharge or deep drainage or deep percolation is a hydrologic process, where water moves downward from surface water to groundwater. Recharge is the primary method through which water enters an aquifer. This process usually occurs in ...
, stabilization of shorelines and storm protection, water storage and flood control, processing of carbon (
carbon fixation Biological carbon fixation or сarbon assimilation is the process by which inorganic carbon (particularly in the form of carbon dioxide) is converted to organic compounds by living organisms. The compounds are then used to store energy and as ...
, decomposition and sequestration), other nutrients and pollutants, and support of plants and animals. Wetlands are reservoirs of biodiversity and provide wetland products. According to the UN Millennium Ecosystem Assessment, wetlands are more affected by
environmental degradation Environmental degradation is the deterioration of the environment (biophysical), environment through depletion of resources such as quality of air, water and soil; the destruction of ecosystems; habitat destruction; the extinction of wildlife; an ...
than any other ecosystem on Earth. Wetlands can be important sources and sinks of carbon, depending on the specific wetland, and thus will play an important role in climate change and need to be considered in attempts to mitigate climate change. However, some wetlands are a significant source of methane emissions and some are also emitters of nitrous oxide. Constructed wetlands are designed and built to treat municipal and industrial wastewater as well as to divert
stormwater Stormwater, also spelled storm water, is water that originates from precipitation (storm), including heavy rain and meltwater from hail and snow. Stormwater can soak into the soil ( infiltrate) and become groundwater, be stored on depressed la ...
runoff. Constructed wetlands may also play a role in
water-sensitive urban design Water-sensitive urban design (WSUD) is a land planning and engineering design approach which integrates the urban water cycle, including stormwater, groundwater, and wastewater management and water supply, into urban design to minimise environme ...
.


Definitions and terminology


Technical definitions

A simplified definition of wetland is "an area of land that is usually saturated with water". More precisely, wetlands are areas where "water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year, including during the growing season". A patch of land that develops pools of water after a rain storm would not necessarily be considered a "wetland", even though the land is wet. Wetlands have unique characteristics: they are generally distinguished from other
water bodies A body of water or waterbody (often spelled water body) is any significant accumulation of water on the surface of Earth or another planet. The term most often refers to oceans, seas, and lakes, but it includes smaller pools of water such as p ...
or
landform A landform is a natural or anthropogenic land feature on the solid surface of the Earth or other planetary body. Landforms together make up a given terrain, and their arrangement in the landscape is known as topography. Landforms include hills, ...
s based on their water level and on the types of plants that live within them. Specifically, wetlands are characterized as having a water table that stands at or near the land surface for a long enough period each year to support
aquatic plants Aquatic plants are plants that have adapted to living in aquatic environments (saltwater or freshwater). They are also referred to as hydrophytes or macrophytes to distinguish them from algae and other microphytes. A macrophyte is a plant that ...
. A more concise definition is a community composed of hydric soil and
hydrophytes Aquatic plants are plants that have adapted to living in aquatic environments (saltwater or freshwater). They are also referred to as hydrophytes or macrophytes to distinguish them from algae and other microphytes. A macrophyte is a plant that ...
. Wetlands have also been described as ecotones, providing a transition between dry land and water bodies. Wetlands exist "...at the interface between truly terrestrial ecosystems and aquatic systems, making them inherently different from each other, yet highly dependent on both." In environmental decision-making, there are subsets of definitions that are agreed upon to make regulatory and policy decisions. Under the Ramsar international wetland conservation treaty, wetlands are defined as follows: *Article 1.1: "...wetlands are areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six meters." *Article 2.1: " etlandsmay incorporate riparian and coastal zones adjacent to the wetlands, and islands or bodies of marine water deeper than six meters at
low tide Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon (and to a much lesser extent, the Sun) and are also caused by the Earth and Moon orbiting one another. Tide tables can ...
lying within the wetlands." An ecological definition of a wetland is "an ecosystem that arises when inundation by water produces soils dominated by anaerobic and aerobic processes, which, in turn, forces the biota, particularly rooted plants, to adapt to flooding". Sometimes a precise legal definition of a wetland is required. The definition used for regulation by the United States government is: 'The term "wetlands" means those areas that are inundated or saturated by surface or ground water at a frequency and duration to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally included swamps, marshes, bogs, and similar areas.' For each of these definitions and others, regardless of the purpose, hydrology is emphasized (shallow waters, water-logged soils). The soil characteristics and the plants and animals controlled by the wetland hydrology are often additional components of the definitions.


Types

Wetlands can be tidal (inundated by tides) or non-tidal. The water in wetlands is either
freshwater Fresh water or freshwater is any naturally occurring liquid or frozen water containing low concentrations of dissolved salts and other total dissolved solids. Although the term specifically excludes seawater and brackish water, it does include ...
, brackish, or saltwater. There are four main kinds of wetlands – marsh,
swamp A swamp is a forested wetland.Keddy, P.A. 2010. Wetland Ecology: Principles and Conservation (2nd edition). Cambridge University Press, Cambridge, UK. 497 p. Swamps are considered to be transition zones because both land and water play a role in ...
,
bog A bog or bogland is a wetland that accumulates peat as a deposit of dead plant materials often mosses, typically sphagnum moss. It is one of the four main types of wetlands. Other names for bogs include mire, mosses, quagmire, and muskeg; a ...
and fen (bogs and fens being types of
peatlands A mire, peatland, or quagmire is a wetland area dominated by living peat-forming plants. Mires arise because of incomplete decomposition of organic matter, usually litter from vegetation, due to water-logging and subsequent anoxia. All types ...
or mires). Some experts also recognize wet meadows and aquatic ecosystems as additional wetland types. Sub-types include
mangrove forests A mangrove is a shrub or tree that grows in coastal saline or brackish water. The term is also used for tropical coastal vegetation consisting of such species. Mangroves are taxonomically diverse, as a result of convergent evolution in several ...
, carrs, pocosins, floodplains,
peatlands A mire, peatland, or quagmire is a wetland area dominated by living peat-forming plants. Mires arise because of incomplete decomposition of organic matter, usually litter from vegetation, due to water-logging and subsequent anoxia. All types ...
, vernal pools,
sinks A sink is a bowl-shaped plumbing fixture for washing hands, dishwashing, and other purposes. Sinks have a tap (faucet) that supply hot and cold water and may include a spray feature to be used for faster rinsing. They also include a drain to ...
, and many others. The following three groups are used within
Australia Australia, officially the Commonwealth of Australia, is a Sovereign state, sovereign country comprising the mainland of the Australia (continent), Australian continent, the island of Tasmania, and numerous List of islands of Australia, sma ...
to classify wetland by type: Marine and coastal zone wetlands, inland wetlands and human-made wetlands. In the US, the best known classifications are the
Cowardin classification system The Cowardin classification system is a system for classifying wetlands, devised by Lewis M. Cowardin ''et al.'' in 1979 for the United States Fish and Wildlife Service. The system includes five main types of wetlands: # Marine wetlands- which are ...
and the hydrogeomorphic (HGM) classification system. The Cowardin system includes five main types of wetlands: marine (ocean-associated); estuarine (mixed ocean- and river-associated); riverine (within river channels); lacustrine (lake-associated); and palustrine (inland nontidal habitats).


Peatlands

Peatlands A mire, peatland, or quagmire is a wetland area dominated by living peat-forming plants. Mires arise because of incomplete decomposition of organic matter, usually litter from vegetation, due to water-logging and subsequent anoxia. All types ...
are a unique kind of wetland where lush plant growth and slow decay of dead plants (under anoxic conditions) results in organic peat accumulating; bogs, fens, and mires are different names for peatlands.


Wetland names

Variations of names for wetland systems: *
Bayou In usage in the Southern United States, a bayou () is a body of water typically found in a flat, low-lying area. It may refer to an extremely slow-moving stream, river (often with a poorly defined shoreline), marshy lake, wetland, or creek. They ...
* Flooded grasslands and savannas * Marsh ** Brackish marsh **
Freshwater marsh A freshwater marsh is a non-tidal, non-forested marsh wetland that contains fresh water, and is continuously or frequently flooded. Freshwater marshes primarily consist of sedges, grasses, and emergent plants. Freshwater marshes are usually found ...
* Mire ** Fen **
Bog A bog or bogland is a wetland that accumulates peat as a deposit of dead plant materials often mosses, typically sphagnum moss. It is one of the four main types of wetlands. Other names for bogs include mire, mosses, quagmire, and muskeg; a ...
* Riparian zone *
Swamp A swamp is a forested wetland.Keddy, P.A. 2010. Wetland Ecology: Principles and Conservation (2nd edition). Cambridge University Press, Cambridge, UK. 497 p. Swamps are considered to be transition zones because both land and water play a role in ...
** Freshwater swamp forest **
Coniferous swamp Coniferous swamps are forested wetlands in which the dominant trees are lowland conifers such as northern white cedar (''Thuja occidentalis''). The soil in these swamp areas is typically saturated for most of the growing season and is occasional ...
** Peat swamp forest **
Mangrove swamp Mangrove forests, also called mangrove swamps, mangrove thickets or mangals, are productive wetlands that occur in coastal intertidal zones. Mangrove forests grow mainly at tropical and subtropical latitudes because mangroves cannot withstand fre ...
* Vernal pool Some wetlands have localized names unique to a region such as the prairie potholes of North America's northern plain, pocosins, Carolina bays and baygallsTexas Parks and Wildlife. Ecological Mapping systems of Texas:
West Gulf Coastal Plain Seepage Swamp and Baygall
'. Retrieved 7 July 2020
of the Southeastern US, mallines of Argentina, Mediterranean seasonal ponds of Europe and California, turloughs of Ireland, billabongs of Australia, among many others.


Locations


By temperature zone

Wetlands are found throughout the world in different climates. Temperatures vary greatly depending on the location of the wetland. Many of the world's wetlands are in the temperate zones, midway between the North or South Poles and the equator. In these zones, summers are warm and winters are cold, but temperatures are not extreme. In subtropical zone wetlands, such as along the Gulf of Mexico, average temperatures might be . Wetlands in the tropics are subjected to much higher temperatures for a large portion of the year. Temperatures for wetlands on the
Arabian Peninsula The Arabian Peninsula, (; ar, شِبْهُ الْجَزِيرَةِ الْعَرَبِيَّة, , "Arabian Peninsula" or , , "Island of the Arabs") or Arabia, is a peninsula of Western Asia, situated northeast of Africa on the Arabian Plate ...
can exceed and these habitats would therefore be subject to rapid evaporation. In northeastern Siberia, which has a polar climate, wetland temperatures can be as low as . Peatlands in arctic and subarctic regions insulate the
permafrost Permafrost is ground that continuously remains below 0 °C (32 °F) for two or more years, located on land or under the ocean. Most common in the Northern Hemisphere, around 15% of the Northern Hemisphere or 11% of the global surface ...
, thus delaying or preventing its thawing during summer, as well as inducing its formation.


By precipitation amount

The amount of precipitation a wetland receives varies widely according to its area. Wetlands in Wales, Scotland, and western Ireland typically receive about per year. In some places in Southeast Asia, where heavy rains occur, they can receive up to . In some drier regions, wetlands exist where as little as precipitation occurs each year. Temporal variation: * Perennial systems * Seasonal systems *Episodic (periodic or intermittent) systems * Ephemeral (short-lived) systems Surface flow may occur in some segments, with subsurface flow in other segments.


Processes

Wetlands vary widely due to local and regional differences in topography, hydrology, vegetation, and other factors, including human involvement. Other important factors include fertility, natural disturbance, competition, herbivory, burial and salinity. When peat accumulates,
bog A bog or bogland is a wetland that accumulates peat as a deposit of dead plant materials often mosses, typically sphagnum moss. It is one of the four main types of wetlands. Other names for bogs include mire, mosses, quagmire, and muskeg; a ...
s and fens arise.


Hydrology

The most important factor producing wetlands is hydrology, or flooding. The duration of flooding or prolonged soil saturation by groundwater determines whether the resulting wetland has aquatic, marsh or
swamp A swamp is a forested wetland.Keddy, P.A. 2010. Wetland Ecology: Principles and Conservation (2nd edition). Cambridge University Press, Cambridge, UK. 497 p. Swamps are considered to be transition zones because both land and water play a role in ...
vegetation. Other important factors include soil fertility, natural disturbance, competition, herbivory, burial, and salinity. When peat from dead plants accumulates,
bog A bog or bogland is a wetland that accumulates peat as a deposit of dead plant materials often mosses, typically sphagnum moss. It is one of the four main types of wetlands. Other names for bogs include mire, mosses, quagmire, and muskeg; a ...
s and fens develop. Wetland hydrology is associated with the spatial and temporal dispersion, flow, and physio-chemical attributes of surface and ground waters. Sources of hydrological flows into wetlands are predominantly precipitation, surface water (saltwater or freshwater), and groundwater. Water flows out of wetlands by evapotranspiration, surface flows and tides, and subsurface water outflow.
Hydrodynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) and ...
(the movement of water through and from a wetland) affects hydro-periods (temporal fluctuations in water levels) by controlling the water balance and water storage within a wetland. Landscape characteristics control wetland hydrology and water chemistry. The O2 and CO2 concentrations of water depend on temperature, atmospheric pressure and mixing with the air (from winds or water flows). Water chemistry within wetlands is determined by the pH,
salinity Salinity () is the saltiness or amount of salt dissolved in a body of water, called saline water (see also soil salinity). It is usually measured in g/L or g/kg (grams of salt per liter/kilogram of water; the latter is dimensionless and equal ...
, nutrients, conductivity, soil composition, hardness, and the sources of water. Water chemistry varies across landscapes and climatic regions. Wetlands are generally
minerotrophic Minerotrophic refers to environments that receive nutrients primarily through groundwater that flows through mineral-rich soils or rock,Environment Canada (2014). Ontario wetland evaluation system: Northern Manual, 1st edition, version 3.2. Queen’ ...
(waters contain dissolved materials from soils) with the exception of ombrotrophic bogs that are fed only by water from precipitation. Because bogs receive most of their water from the
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A s ...
, their water usually has low mineral ionic composition. In contrast, wetlands fed by groundwater or tides have a higher concentration of dissolved nutrients and minerals. Fen peatlands receive water both from precipitation and ground water in varying amounts so their water chemistry ranges from acidic with low levels of dissolved minerals to alkaline with high accumulation of calcium and magnesium.


Role of salinity

Salinity has a strong influence on wetland water chemistry, particularly in coastal wetlands and in arid and semiarid regions with large precipitation deficits. Natural salinity is regulated by interactions between ground and surface water, which may be influenced by human activity.


Soil

Carbon is the major nutrient cycled within wetlands. Most nutrients, such as
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
, phosphorus, carbon, and nitrogen are found within the soil of wetlands. Anaerobic and
aerobic respiration Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor such as oxygen to produce large amounts of energy, to drive the bulk production of ATP. Cellular respiration may be des ...
in the soil influences the nutrient cycling of carbon, hydrogen, oxygen, and nitrogen, and the solubility of phosphorus thus contributing to the chemical variations in its water. Wetlands with low pH and saline conductivity may reflect the presence of acid sulfates and wetlands with average salinity levels can be heavily influenced by calcium or magnesium. Biogeochemical processes in wetlands are determined by soils with low redox potential. Wetland soils are identified by redoxymorphic mottles (often from iron oxide rust) or low chroma intensity, as determined by the Munsell Color System.


Water chemistry

Due to the low dissolved oxygen (DO) content, and relatively low nutrient balance of wetland environments, most wetlands are very susceptible to alterations in water chemistry. Key factors that are assessed to determine water quality include: * Major anion analysis: (HCO3,Cl,NO3,SO42-) * Major
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
analysis (Ca2+, Mg2+, Na+, K+) * pH * Conductivity- conductivity increases with more dissolved ions in the water * Turbidity * Dissolved oxygen * Temperature * Total dissolved solids * Gas emissions ( carbon dioxide and methane; CO2 and CH4) These chemical factors can be used to quantify wetland disturbances, and often provide information as to whether a wetland is fed by precipitation, surface water or groundwater, due to the different ion characteristics of the different water sources. Wetlands are adept at impacting the water chemistry of streams or water bodies that interact with them, and can process ions that result from water pollution such as acid mine drainage or urban runoff.,


Biota

The biota of a wetland system includes its plants ( flora) and animals ( fauna) and microbes (bacteria, fungi). The most important factor affecting the biota is the hydroperiod, or the duration of flooding. Other important factors include fertility and salinity of the water or soils. The chemistry of water flowing into wetlands depends on the source of water, the geological material that it flows through and the nutrients discharged from organic matter in the soils and plants at higher elevations. Biota may vary within a wetland seasonally or in response to flood regimes.


Flora

There are four main groups of hydrophytes that are found in wetland systems throughout the world. Submerged wetland vegetation can grow in saline and fresh-water conditions. Some species have underwater flowers, while others have long stems to allow the flowers to reach the surface. Submerged species provide a food source for native fauna, habitat for invertebrates, and also possess filtration capabilities. Examples include
seagrasses Seagrasses are the only flowering plants which grow in marine environments. There are about 60 species of fully marine seagrasses which belong to four families (Posidoniaceae, Zosteraceae, Hydrocharitaceae and Cymodoceaceae), all in the orde ...
and eelgrass. Floating water plants or floating vegetation are usually small, like those in the Lemnoideae subfamily (duckweeds). Emergent vegetation like the cattails (''
Typha ''Typha'' is a genus of about 30 species of monocotyledonous flowering plants in the family Typhaceae. These plants have a variety of common names, in British English as bulrush or reedmace, in American English as reed, cattail, or punks, in A ...
'' spp.), sedges ('' Carex'' spp.) and arrow arum ('' Peltandra virginica'') rise above the surface of the water. When trees and shrubs comprise much of the plant cover in saturated soils, those areas in most cases are called
swamp A swamp is a forested wetland.Keddy, P.A. 2010. Wetland Ecology: Principles and Conservation (2nd edition). Cambridge University Press, Cambridge, UK. 497 p. Swamps are considered to be transition zones because both land and water play a role in ...
s. The upland boundary of swamps is determined partly by water levels. This can be affected by dams Some swamps can be dominated by a single species, such as silver maple swamps around the Great Lakes. Others, like those of the
Amazon basin The Amazon basin is the part of South America drained by the Amazon River and its tributaries. The Amazon drainage basin covers an area of about , or about 35.5 percent of the South American continent. It is located in the countries of Bolivi ...
, have large numbers of different tree species. Other examples include cypress (''
Taxodium ''Taxodium'' is a genus of one to three species (depending on taxonomic opinion) of extremely flood-tolerant conifers in the cypress family, Cupressaceae. The generic name is derived from the Latin word ''taxus'', meaning " yew", and the Greek ...
'') and mangrove swamps.


Fauna

Many species of fish are highly dependent on wetland ecosystems. Seventy-five percent of the United States' commercial fish and shellfish stocks depend solely on estuaries to survive. Tropical fish species need mangroves for critical hatchery and nursery grounds and the coral reef system for food.
Amphibian Amphibians are tetrapod, four-limbed and ectothermic vertebrates of the Class (biology), class Amphibia. All living amphibians belong to the group Lissamphibia. They inhabit a wide variety of habitats, with most species living within terres ...
s such as frogs and salamanders need both terrestrial and aquatic habitats in which to reproduce and feed. Because amphibians often inhabit depressional wetlands like prairie potholes and Carolina bays, the connectivity among these isolated wetlands is an important control of regional populations. While tadpoles feed on algae, adult frogs forage on insects. Frogs are sometimes used as an indicator of ecosystem health because their thin skin permits absorption of nutrients and toxins from the surrounding environment resulting in increased extinction rates in unfavorable and polluted environmental conditions.
Reptile Reptiles, as most commonly defined are the animals in the class Reptilia ( ), a paraphyletic grouping comprising all sauropsids except birds. Living reptiles comprise turtles, crocodilians, squamates (lizards and snakes) and rhynchocephalians ( ...
s such as snakes,
lizard Lizards are a widespread group of squamate reptiles, with over 7,000 species, ranging across all continents except Antarctica, as well as most oceanic island chains. The group is paraphyletic since it excludes the snakes and Amphisbaenia alt ...
s, turtles, alligators and
crocodile Crocodiles (family (biology), family Crocodylidae) or true crocodiles are large semiaquatic reptiles that live throughout the tropics in Africa, Asia, the Americas and Australia. The term crocodile is sometimes used even more loosely to inclu ...
s are common in wetlands of some regions. In freshwater wetlands of the Southeastern US, alligators are common and a freshwater species of crocodile occurs in South Florida. The Florida
Everglades The Everglades is a natural region of tropical climate, tropical wetlands in the southern portion of the U.S. state of Florida, comprising the southern half of a large drainage basin within the Neotropical realm. The system begins near Orland ...
is the only place in the world where both crocodiles and alligators coexist. The saltwater crocodile inhabits estuaries and mangroves and can be seen along the Eastern coastline of Australia. Snapping turtles are one of the many kinds of turtles found in wetlands. Birds, particularly waterfowl and wading birds, use wetlands extensively.
Mammal Mammals () are a group of vertebrate animals constituting the class Mammalia (), characterized by the presence of mammary glands which in females produce milk for feeding (nursing) their young, a neocortex (a region of the brain), fur or ...
s of wetlands include numerous small and medium-sized species such as voles, bats,
muskrat The muskrat (''Ondatra zibethicus'') is a medium-sized semiaquatic rodent native to North America and an introduced species in parts of Europe, Asia, and South America. The muskrat is found in wetlands over a wide range of climates and habitat ...
s and platypus in addition to large herbivorous and apex predator species such as the
beaver Beavers are large, semiaquatic rodents in the genus ''Castor'' native to the temperate Northern Hemisphere. There are two extant species: the North American beaver (''Castor canadensis'') and the Eurasian beaver (''C. fiber''). Beavers ar ...
, coypu,
swamp rabbit The swamp rabbit (''Sylvilagus aquaticus''), also called the cane-cutter, is a large cottontail rabbit found in the swamps and wetlands of the southern United States. The species has a strong preference for wet areas, and it will take to the wate ...
,
Florida panther The Florida panther is a North American cougar (''P. c. couguar'') population in South Florida. It lives in pinelands, tropical hardwood hammocks, and mixed freshwater swamp forests. It is known under a number of common names including Costa R ...
, and moose. Wetlands attract many mammals due to abundant seeds, berries, and other vegetation as food for herbivores, as well as abundant populations of invertebrates, small reptiles and amphibians as prey for predators. Invertebrates of wetlands include aquatic insects (such as dragonflies, aquatic bugs and beetles, midges, mosquitoes), crustaceans (such as crabs, crayfish, shrimps, microcrustaceans), mollusks (such as clams, mussels, snails), and worms (such as polychaetes, oligochaetes, leeches), among others. Invertebrates comprise more than half of the known animal species in wetlands, and are considered the primary food web link between plants and higher animals (such as fish and birds). The low oxygen conditions in wetland water and their frequent flooding and drying (daily in tidal wetlands, seasonally in temporary ponds and floodplains) prevent many invertebrates from inhabiting wetlands, and thus the invertebrate fauna of wetlands is often less diverse than some other kinds of habitat (such as streams, coral reefs, and forests). Some wetland invertebrates thrive in habitats that lack predatory fish. Many insects only inhabit wetlands as aquatic immatures (nymphs, larvae) and the flying adults inhabit upland habitats, returning to the wetlands to lay eggs. For instance, a common hoverfly '' Syritta pipiens'' inhabits wetlands as larvae (maggots), living in wet, rotting organic matter; these insects then visit terrestrial flowers as adult flies.


Algae

Algae Algae (; singular alga ) is an informal term for a large and diverse group of photosynthetic eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from unicellular mic ...
are diverse plant-like organisms that can vary in size, color, and shape. Algae occur naturally in habitats such as inland lakes, inter-tidal zones, and damp soil and provide a food source for many animals, including some invertebrates, fish, turtles, and frogs. There are several groups of algae: *
Phytoplankton Phytoplankton () are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems. The name comes from the Greek words (), meaning 'plant', and (), meaning 'wanderer' or 'drifter'. Ph ...
are microscopic, free-floating algae. These algae are so tiny that on average, 50 of these lined up end-to-end would only measure one millimeter. Phytoplankton are the basis of the food web in many water bodies being responsible for much of the primary production using photosynthesis to fix carbon. Filamentous algae are long strands of algal cells that can form floating mats. Periphyton (or epiphyton) are algae that grow as surface biofilms on plants, wood, and other substrates. * ''Chara'' and ''
Nitella ''Nitella'' is a genus of charophyte green algae in the family Characeae. Species The species in the genus include: *'' Nitella abyssinica'' A. Braun * '' Nitella acuminata'' A. Braun ex Wallman *'' Nitella aemula'' A. Braun * '' Nitella an ...
'' algae are upright algae that look like a submerged plants with roots.


Disturbances and human impacts

Wetlands, the functions and services they provide as well as their flora and fauna, can be affected by several types of disturbances. The disturbances (sometimes termed stressors or alterations) can be human-associated or natural, direct or indirect, reversible or not, and isolated or cumulative. Disturbances exceed the levels or patterns normally found within wetlands of a particular class in a particular region. Predominant disturbances of wetlands include: * Enrichment/ eutrophication * Organic loading and reduced dissolved oxygen * Contaminant toxicity *
Acidification Acidification may refer to: * Ocean acidification, decrease in the pH of the Earth's oceans * Freshwater acidification, atmospheric depositions and soil leaching of SOx and NOx * Soil acidification, buildup of hydrogen cations, which reduces the ...
* Salinization * Sedimentation * Altered solar input ( turbidity/shade) * Vegetation removal * Thermal alteration * Drying/ aridification * Inundation/flooding *
Habitat fragmentation Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred environment (habitat), causing population fragmentation and ecosystem decay. Causes of habitat fragmentation include geological processes ...
* Other human impacts Disturbances can be further categorized as follows: * Minor disturbance: Stress that maintains ecosystem integrity. * Moderate disturbance: Ecosystem integrity is damaged but can recover in time without assistance. * Impairment or severe disturbance: Human intervention may be needed in order for ecosystem to recover. Just a few of the many sources of these disturbances include: * Drainage * Development * Over-grazing * Mining * Unsustainable water use * Nutrient pollution (
anthropogenic Anthropogenic ("human" + "generating") is an adjective that may refer to: * Anthropogeny, the study of the origins of humanity Counterintuitively, anthropogenic may also refer to things that have been generated by humans, as follows: * Human im ...
nitrogen inputs to aquatic systems have drastically effected the dissolved nitrogen content of wetlands, introducing higher nutrient availability which leads to eutrophication.) * Water pollution They can be manifested partly as: * Water scarcity *Impacts to
endangered species An endangered species is a species that is very likely to become extinct in the near future, either worldwide or in a particular political jurisdiction. Endangered species may be at risk due to factors such as habitat loss, poaching and inv ...
* Disruption of wildlife breeding grounds * Imbalance in sediment load and nutrient filtration Biodiversity loss occurs in wetland systems through land use changes, habitat destruction, pollution, exploitation of resources, and invasive species. Vulnerable, threatened, and
endangered species An endangered species is a species that is very likely to become extinct in the near future, either worldwide or in a particular political jurisdiction. Endangered species may be at risk due to factors such as habitat loss, poaching and inv ...
include 17% of waterfowl, 38% of fresh-water dependent mammals, 33% of freshwater fish, 26% of freshwater amphibians, 72% of freshwater turtles, 86% of marine turtles, 43% of crocodilians and 27% of coral reef-building species. Introduced aquatic plants in different wetland systems can have large impacts. The introduction of water hyacinth, a native plant of South America into Lake Victoria in East Africa as well as
duckweed Lemnoideae is a subfamily of flowering aquatic plants, known as duckweeds, water lentils, or water lenses. They float on or just beneath the surface of still or slow-moving bodies of fresh water and wetlands. Also known as bayroot, they arose ...
into non-native areas of Queensland, Australia, have overtaken entire wetland systems overwhelming the habitats and reducing the diversity of native plants and animals. This is largely due to the phenomenal growth rates of the plants and their ability to float and grow across the entire surface of the water.


Conversion to dry land

Due to their productivity, wetlands are often converted into dry land with dykes and drains and used for agricultural purposes. The construction of dykes, and dams, has negative consequences for individual wetlands and entire watersheds. Their proximity to lakes and rivers means that they are often developed for human settlement. Once settlements are constructed and protected by dykes, the settlements then become vulnerable to land subsidence and ever increasing risk of flooding. The Mississippi River Delta around New Orleans, Louisiana is a well-known example; the Danube Delta in Europe is another.


Ecosystem services

Depending on a wetland's geographic and topographic location, the functions it performs can support multiple ecosystem services, values, or benefits. United Nations Millennium Ecosystem Assessment and Ramsar Convention described wetlands as a whole to be of biosphere significance and societal importance in the following areas: * Water storage (flood control) *Groundwater replenishment *Shoreline stabilization and storm protection * Water purification *
Wastewater treatment Wastewater treatment is a process used to remove contaminants from wastewater and convert it into an effluent that can be returned to the water cycle. Once returned to the water cycle, the effluent creates an acceptable impact on the environme ...
(in constructed wetlands) *Reservoirs of biodiversity *Pollination *Wetland products *Cultural values *Recreation and tourism *
Climate change mitigation Climate change mitigation is action to limit climate change by reducing Greenhouse gas emissions, emissions of greenhouse gases or Carbon sink, removing those gases from the atmosphere. The recent rise in global average temperature is mostly caus ...
and
adaptation In biology, adaptation has three related meanings. Firstly, it is the dynamic evolutionary process of natural selection that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the po ...
According to the Ramsar Convention:
The economic worth of the ecosystem services provided to society by intact, naturally functioning wetlands is frequently much greater than the perceived benefits of converting them to 'more valuable' intensive land use – particularly as the profits from unsustainable use often go to relatively few individuals or corporations, rather than being shared by society as a whole.
''Unless otherwise cited, ecosystem services information is based on the following series of references.'' To replace these wetland ecosystem services, enormous amounts of money would need to be spent on water purification plants, dams, levees, and other hard infrastructure, and many of the services are impossible to replace.


Storage reservoirs and flood protection

Floodplains and closed-depression wetlands can provide the functions of storage reservoirs and flood protection. The wetland system of
floodplains A floodplain or flood plain or bottomlands is an area of land adjacent to a river which stretches from the banks of its channel to the base of the enclosing valley walls, and which experiences flooding during periods of high discharge.Goudi ...
is formed from major rivers downstream from their headwaters. "The floodplains of major rivers act as natural storage reservoirs, enabling excess water to spread out over a wide area, which reduces its depth and speed. Wetlands close to the headwaters of streams and rivers can slow down rainwater runoff and spring snowmelt so that it doesn't run straight off the land into water courses. This can help prevent sudden, damaging floods downstream." Notable river systems that produce wide floodplains include the
Nile River The Nile, , Bohairic , lg, Kiira , Nobiin: Áman Dawū is a major north-flowing river in northeastern Africa. It flows into the Mediterranean Sea. The Nile is the longest river in Africa and has historically been considered the longest rive ...
, the Niger river inland delta, the Zambezi River flood plain, the Okavango River inland delta, the Kafue River flood plain, the Lake Bangweulu flood plain (Africa), Mississippi River (USA),
Amazon River The Amazon River (, ; es, Río Amazonas, pt, Rio Amazonas) in South America is the largest river by discharge volume of water in the world, and the disputed longest river system in the world in comparison to the Nile. The headwaters of t ...
(South America), Yangtze River (China), Danube River (Central Europe) and Murray-Darling River (Australia). Drainage of floodplains or development activities that narrow floodplain corridors (such as the construction of
levee A levee (), dike (American English), dyke (English in the Commonwealth of Nations, Commonwealth English), embankment, floodbank, or stop bank is a structure that is usually soil, earthen and that often runs parallel (geometry), parallel to ...
s) reduces the ability of coupled river-floodplain systems to control flood damage. That is because modified and less expansive systems must still manage the same amount of precipitation, causing flood peaks to be higher or deeper and floodwaters to travel faster. Water management engineering developments in the past century have degraded floodplain wetlands through the construction of artificial embankments such as dykes, bunds, levees, weirs, barrages and dams. All concentrate water into a main channel and waters that historically spread slowly over a large, shallow area are concentrated. Loss of wetland floodplains results in more severe and damaging flooding. Catastrophic human impact in the Mississippi River floodplains was seen in death of several hundred individuals during a levee breach in New Orleans caused by Hurricane Katrina. Human-made embankments along the Yangtze River floodplains have caused the main channel of the river to become prone to more frequent and damaging flooding. Some of these events include the loss of riparian vegetation, a 30% loss of the vegetation cover throughout the river's basin, a doubling of the percentage of the land affected by soil erosion, and a reduction in reservoir capacity through siltation build-up in floodplain lakes.


Groundwater replenishment

Groundwater replenishment can be achieved for example by marsh,
swamp A swamp is a forested wetland.Keddy, P.A. 2010. Wetland Ecology: Principles and Conservation (2nd edition). Cambridge University Press, Cambridge, UK. 497 p. Swamps are considered to be transition zones because both land and water play a role in ...
, and subterranean
karst Karst is a topography formed from the dissolution of soluble rocks such as limestone, dolomite, and gypsum. It is characterized by underground drainage systems with sinkholes and caves. It has also been documented for more weathering-resistant ro ...
and cave hydrological systems. The
surface water Surface water is water located on top of land forming terrestrial (inland) waterbodies, and may also be referred to as ''blue water'', opposed to the seawater and waterbodies like the ocean. The vast majority of surface water is produced by prec ...
visibly seen in wetlands only represents a portion of the overall water cycle, which also includes atmospheric water (precipitation) and groundwater. Many wetlands are directly linked to groundwater and they can be a crucial regulator of both the quantity and
quality of water Water quality refers to the chemical, physical, and biological characteristics of water based on the standards of its usage. It is most frequently used by reference to a set of standards against which compliance, generally achieved through tre ...
found below the ground. Wetlands that have permeable substrates like limestone or occur in areas with highly variable and fluctuating water tables have especially important roles in
groundwater replenishment Groundwater recharge or deep drainage or deep percolation is a hydrologic process, where water moves downward from surface water to groundwater. Recharge is the primary method through which water enters an aquifer. This process usually occurs in ...
or water recharge. Substrates that are porous allow water to filter down through the soil and underlying rock into aquifers which are the source of much of the world's drinking water. Wetlands can also act as recharge areas when the surrounding water table is low and as a discharge zone when it is high.
Karst Karst is a topography formed from the dissolution of soluble rocks such as limestone, dolomite, and gypsum. It is characterized by underground drainage systems with sinkholes and caves. It has also been documented for more weathering-resistant ro ...
(cave) systems are a unique example of this system and can be a connection of underground rivers influenced by rain and other forms of precipitation to the surface.


Shoreline stabilization and storm protection

Mangroves, coral reefs, salt marsh can help with shoreline stabilization and storm protection. Tidal and inter-tidal wetland systems protect and stabilize coastal zones.
Coral reefs A coral reef is an underwater ecosystem characterized by reef-building corals. Reefs are formed of Colony (biology), colonies of coral polyp (zoology), polyps held together by calcium carbonate. Most coral reefs are built from stony corals, wh ...
provide a protective barrier to coastal shoreline. Mangroves stabilize the coastal zone from the interior and will migrate with the shoreline to remain adjacent to the boundary of the water. The main conservation benefit these systems have against storms and
storm surge A storm surge, storm flood, tidal surge, or storm tide is a coastal flood or tsunami-like phenomenon of rising water commonly associated with low-pressure weather systems, such as cyclones. It is measured as the rise in water level above the n ...
s is the ability to reduce the speed and height of waves and floodwaters. The number of people who live and work near the coast is expected to grow immensely over the next fifty years. From an estimated 200 million people that currently live in low-lying coastal regions, the development of urban coastal centers is projected to increase the population by fivefold within 50 years. The United Kingdom has begun the concept of managed coastal realignment. This management technique provides shoreline protection through restoration of natural wetlands rather than through applied engineering. In East Asia, reclamation of coastal wetlands has resulted in widespread transformation of the coastal zone, and up to 65% of coastal wetlands have been destroyed by coastal development. One analysis using the impact of hurricanes versus storm protection provided naturally by wetlands projected the value of this service at US$33,000/hectare/year.


Water purification

Water purification can be provided by floodplains, closed-depression wetlands,
mudflat Mudflats or mud flats, also known as tidal flats or, in Ireland, slob or slobs, are coastal wetlands that form in intertidal areas where sediments have been deposited by tides or rivers. A global analysis published in 2019 suggested that tidal fl ...
,
freshwater marsh A freshwater marsh is a non-tidal, non-forested marsh wetland that contains fresh water, and is continuously or frequently flooded. Freshwater marshes primarily consist of sedges, grasses, and emergent plants. Freshwater marshes are usually found ...
, salt marsh, mangroves. Nutrient retention: Wetlands cycle both sediments and nutrients, sometimes serving as buffers between terrestrial and aquatic ecosystems. A natural function of wetland vegetation is the up-take, storage, and (for nitrate) the removal of nutrients found in
runoff Runoff, run-off or RUNOFF may refer to: * RUNOFF, the first computer text-formatting program * Runoff or run-off, another name for bleed, printing that lies beyond the edges to which a printed sheet is trimmed * Runoff or run-off, a stock market ...
water from the surrounding landscapes. In many wetlands, microbial processes convert soluble nutrients to a gaseous form, such as denitrification of nitrate, which then moves the nitrate to the atmosphere mostly as harmless nitrogen gas. Sediment and heavy metal traps: Precipitation and surface runoff induces
soil erosion Soil erosion is the denudation or wearing away of the upper layer of soil. It is a form of soil degradation. This natural process is caused by the dynamic activity of erosive agents, that is, water, ice (glaciers), snow, air (wind), plants, and ...
, transporting sediment in suspension into and through waterways. These sediments move towards larger and more sizable waterways through a natural process that moves water towards oceans. All types of sediments whether composed of clay, silt, sand or gravel and rock can be carried into wetland systems through erosion. Wetland vegetation acts as a physical barrier to slow water flow and then trap sediment for both short or long periods of time. Suspended sediment can contain heavy metals that are also retained when wetlands trap the sediment. In some cases, certain metals are taken up through wetland plant stems, roots, and leaves. For example, many floating plant species such as water hyacinth (''Eichhornia crassipes''),
duckweed Lemnoideae is a subfamily of flowering aquatic plants, known as duckweeds, water lentils, or water lenses. They float on or just beneath the surface of still or slow-moving bodies of fresh water and wetlands. Also known as bayroot, they arose ...
(''Lemna'') and
water fern Water fern is a common name for several plants and may refer to: * Salviniales, an order of aquatic ferns * '' Austroblechnum lanceolatum'', syn. ''Blechnum chambersii'', lance water fern * '' Austroblechnum patersonii'', syn. ''Blechnum patersonii' ...
(''Azolla'') store iron and copper found in wastewater; these plants also extract pathogens. Fast-growing plants rooted in the soils of wetlands such as cattail (''Typha'') and reed (''Phragmites'') also contribute to heavy metal up-take. Animals such as the oyster can filter more than of water per day while grazing for food, removing nutrients, suspended sediments, and chemical contaminants in the process. On the other hand, some types of wetlands facilitate the mobilization and bioavailability of mercury (another heavy metal), which in its
methyl mercury Methylmercury (sometimes methyl mercury) is an organometallic cation with the formula . It is the simplest organomercury compound. Methylmercury is extremely toxic, and its derivatives are the major source of organic mercury for humans. It is ...
form increases the risk of bioaccumulation in fish important to animal food webs and harvested for human consumption. Capacity: The ability of wetland systems to store or remove nutrients and trap sediment and associated metals is highly efficient and effective but each system has a threshold. An overabundance of nutrient input from fertilizer run-off, sewage effluent, or non-point pollution will cause eutrophication. Upstream erosion from deforestation can overwhelm wetlands making them shrink in size and cause dramatic biodiversity loss through excessive sedimentation load. Retaining high levels of metals in sediments is problematic if the sediments become resuspended or oxygen and pH levels change at a future time. The capacity of wetland vegetation to store heavy metals depends on the particular metal, oxygen and pH status of wetland sediments and overlying water, water flow rate (detention time), wetland size, season, climate, type of plant, and other factors. The capacity of a wetland to store sediment, nutrients, and metals can be diminished if sediments are compacted such as by vehicles or heavy equipment, or are regularly tilled. Unnatural changes in water levels and water sources also can affect the water purification function. If water purification functions are impaired, excessive loads of nutrients enter waterways and cause eutrophication. This is of particular concern in temperate coastal systems. The main sources of coastal eutrophication are industrially made nitrogen, which is used as fertilizer in agricultural practices, as well as septic waste runoff. Nitrogen is the limiting nutrient for photosynthetic processes in saline systems, however in excess, it can lead to an overproduction of organic matter that then leads to hypoxic and anoxic zones within the water column. Without oxygen, other organisms cannot survive, including economically important finfish and shellfish species.


Wastewater treatment

Constructed wetlands are built for wastewater treatment.An example of how a natural wetland is used to provide some degree of sewage treatment is the East Kolkata Wetlands in Kolkata, India. The wetlands cover , and are used to treat Kolkata's sewage. The nutrients contained in the wastewater sustain fish farms and agriculture.


Reservoirs of biodiversity

Wetland systems' rich biodiversity has becoming a focal point catalysed by the Ramsar Convention and World Wildlife Fund. The impact of maintaining biodiversity is seen at the local level through job creation, sustainability, and community productivity. A good example is the Lower Mekong basin which runs through Cambodia, Laos, and Vietnam, supporting over 55 million people. Biodiverse river basins: The Amazon holds more than 3,000 species of freshwater fish species within the boundaries of its basin. Fishes consuming fallen fruit, e.g., the large-bodied characid, ''Colossoma macropomum'' enter the Amazonian floodplains during annual floods egesting viable seeds thus acting as an important agent of dispersal. A key species which is overfished, the Piramutaba catfish, ''
Brachyplatystoma vaillantii ''Brachyplatystoma vaillantii'', the Laulao catfish or piramuta, is a species of catfish of the family Pimelodidae that is native to Amazon and Orinoco River basins and major rivers of the Guianas and northeastern Brazil. The fish is named in ho ...
'', migrates more than from its nursery grounds near the mouth of the Amazon River to its spawning grounds in Andean tributaries, above sea level, distributing plants seed along the route. Productive intertidal zones: Intertidal mudflats have a level of productivity similar to that of some wetlands even while possessing a low number of species. The abundance of invertebrates found within the mud are a food source for migratory waterfowl. Critical life-stage habitat: Mudflats, saltmarshes, mangroves, and seagrass beds have high levels of both species richness and productivity, and are home to important nursery areas for many commercial fish stocks. Genetic diversity: Populations of many species are confined geographically to only one or a few wetland systems, often due to the long period of time that the wetlands have been physically isolated from other aquatic sources. For example, the number of endemic species in the Selenga River Delta of
Lake Baikal Lake Baikal (, russian: Oзеро Байкал, Ozero Baykal ); mn, Байгал нуур, Baigal nuur) is a rift lake in Russia. It is situated in southern Siberia, between the federal subjects of Irkutsk Oblast to the northwest and the Repu ...
in Russia classifies it as a hotspot for biodiversity and one of the most biodiverse wetlands in the entire world.


Wetland products

Wetland productivity is linked to the climate, wetland type, and nutrient availability. Low water and occasional drying of the wetland bottom during droughts (dry marsh phase) stimulates plant recruitment from a diverse seed bank and increases productivity by mobilizing nutrients. In contrast, high water during deluges (lake marsh phase) causes turnover in plant populations and increases open water, but lowers overall productivity. From open water to complete vegetation cover, annual net primary productivity may vary 20-fold. The grasses of fertile floodplains such as the Nile can be highly productive, especially plants such as '' Arundo donax'' (giant reed), ''
Cyperus papyrus ''Cyperus papyrus'', better known by the common names papyrus, papyrus sedge, paper reed, Indian matting plant, or Nile grass, is a species of aquatic flowering plant belonging to the sedge family Cyperaceae. It is a tender herbaceous perenn ...
'' (papyrus), '' Phragmites'' (reed) and ''
Typha ''Typha'' is a genus of about 30 species of monocotyledonous flowering plants in the family Typhaceae. These plants have a variety of common names, in British English as bulrush or reedmace, in American English as reed, cattail, or punks, in A ...
'' (cattail). Wetlands naturally produce an array of vegetation and other ecological products that can be harvested for personal and commercial use. Many fishes have all or part of their life-cycle occurring within a wetland system. Fresh and saltwater fish are the main source of protein for about one billion people and comprise 15% of an additional 3.5 billion people's protein intake. Another food staple found in wetland systems is rice, a popular grain that is consumed at the rate of one fifth of the total global calorie count. In Bangladesh, Cambodia and Vietnam, where rice paddies are predominant on the landscape, rice consumption reach 70%. Some native wetland plants in the Caribbean and Australia are harvested sustainably for medicinal compounds; these include the red mangrove ('' Rhizophora mangle'') which possesses antibacterial, wound-healing, anti-ulcer effects, and antioxidant properties. The nipa palm of Asia (sugar, vinegar, alcohol, and fodder) and honey collection from mangroves contribute to human diets and people's income. Coastal Thailand villages earn the key portion of their income from sugar production while Cuba relocates thousands of beehives each year to track the seasonal flowering of the mangrove '' Avicennia''. Other mangrove-derived products include fuelwood, salt (produced by evaporating seawater), animal fodder, traditional medicines (e.g. from mangrove bark), fibers for textiles and dyes and tannins. Over-fishing is a major problem for sustainable use of wetlands. Concerns are developing over certain aspects of farm fishing, which uses natural wetlands and waterways to harvest fish for human consumption.
Aquaculture Aquaculture (less commonly spelled aquiculture), also known as aquafarming, is the controlled cultivation ("farming") of aquatic organisms such as fish, crustaceans, mollusks, algae and other organisms of value such as aquatic plants (e.g. lot ...
is continuing to develop rapidly throughout the Asia-Pacific region especially in China where 90% of the total number of aquaculture farms occur, contributing 80% of global value. Some aquaculture has eliminated massive areas of wetland through practices such as the shrimp farming industry's destruction of mangroves. Even though the damaging impact of large-scale shrimp farming on the coastal ecosystem in many Asian countries has been widely recognized for quite some time now, it has proved difficult to mitigate since other employment avenues for people are lacking. Also burgeoning demand for shrimp globally has provided a large and ready market.


Additional services and uses of wetlands

Some types of wetlands can serve as fire breaks that help slow the spread of minor wildfires. Larger wetland systems can influence local precipitation patterns. Some boreal wetland systems in catchment headwaters may help extend the period of flow and maintain water temperature in connected downstream waters. Pollination services are supported by many wetlands which may provide the only suitable habitat for pollinating insects, birds, and mammals in highly developed areas.


Conservation

Wetlands have historically subjected to large draining efforts for development ( real estate or agriculture), and flooding to create recreational lakes or generate hydropower. Some of the world's most important agricultural areas were wetlands that have been converted to farmland. Since the 1970s, more focus has been put on preserving wetlands for their natural functions. Since 1900 between 65-70% of the world's wetlands have been lost. In order to maintain wetlands and sustain their functions, alterations and disturbances that are outside the normal range of variation should be minimized.


Balancing wetland conservation with the needs of people

Wetlands are vital ecosystems that enhance the livelihoods for the millions of people who live in and around them. The Millennium Development Goals (MDGs) called for different sectors to join forces to secure wetland environments in the context of sustainable development and improving human wellbeing. Studies have shown that it is possible to conserve wetlands while improving the livelihoods of people living among them. Case studies conducted in Malawi and Zambia looked at how dambos – wet, grassy valleys or depressions where water seeps to the surface – can be farmed sustainably. Project outcomes included a high yield of crops, development of
sustainable farming Sustainable agriculture is farming in sustainable ways meeting society's present food and textile needs, without compromising the ability for current or future generations to meet their needs. It can be based on an understanding of ecosystem se ...
techniques, and water management strategies that generate enough water for irrigation.


Ramsar Convention

''The Convention on Wetlands of International Importance, especially as Waterfowl Habitat'', or Ramsar Convention, is an international treaty designed to address global concerns regarding wetland loss and degradation. The primary purposes of the treaty are to list wetlands of international importance and to promote their wise use, with the ultimate goal of preserving the world's wetlands. Methods include restricting access to some wetland areas, as well as educating the public to combat the misconception that wetlands are wastelands. The Convention works closely with five International Organisation Partners (IOPs). These are:
Birdlife International BirdLife International is a global partnership of non-governmental organizations that strives to conserve birds and their habitats. BirdLife International's priorities include preventing extinction of bird species, identifying and safeguarding ...
, the
IUCN The International Union for Conservation of Nature (IUCN; officially International Union for Conservation of Nature and Natural Resources) is an international organization working in the field of nature conservation and sustainable use of natu ...
, the
International Water Management Institute The International Water Management Institute (IWMI) is a non-profit international water management research organisation under the CGIAR with its headquarters in Colombo, Sri Lanka, and offices across Africa and Asia. Research at the Institute foc ...
, Wetlands International and the World Wide Fund for Nature. The partners provide technical expertise, help conduct or facilitate field studies and provide financial support. The IOPs also participate regularly as observers in all meetings of the Conference of the Parties and the Standing Committee and as full members of the Scientific and Technical Review Panel.


Restoration

Restoration and restoration ecologists intend to return wetlands to their natural trajectory by aiding directly with the natural processes of the ecosystem. These direct methods vary with respect to the degree of physical manipulation of the natural environment and each are associated with different levels of restoration. Restoration is needed after disturbance or
perturbation Perturbation or perturb may refer to: * Perturbation theory, mathematical methods that give approximate solutions to problems that cannot be solved exactly * Perturbation (geology), changes in the nature of alluvial deposits over time * Perturbatio ...
of a wetland. Disturbances include
exogenous In a variety of contexts, exogeny or exogeneity () is the fact of an action or object originating externally. It contrasts with endogeneity or endogeny, the fact of being influenced within a system. Economics In an economic model, an exogeno ...
factors such as flooding or drought. Other external damage may be
anthropogenic Anthropogenic ("human" + "generating") is an adjective that may refer to: * Anthropogeny, the study of the origins of humanity Counterintuitively, anthropogenic may also refer to things that have been generated by humans, as follows: * Human im ...
disturbance caused by clear-cut harvesting of trees, oil and gas extraction, poorly defined infrastructure installation, over grazing of livestock, ill-considered recreational activities, alteration of wetlands including dredging, draining, and filling, and other negative human impacts. Disturbance puts different levels of stress on an environment depending on the type and duration of disturbance. There is no one way to restore a wetland and the level of restoration required will be based on the level of disturbance although, each method of restoration does require preparation and administration.


Levels of restoration

Factors influencing selected approach may include budget, time scale limitations, project goals, level of disturbance, landscape and ecological constraints, political and administrative agendas and socioeconomic priorities.


Prescribed natural or assisted regeneration

For this strategy, there is no biophysical manipulation and the ecosystem is left to recover based on the process of
succession Succession is the act or process of following in order or sequence. Governance and politics *Order of succession, in politics, the ascension to power by one ruler, official, or monarch after the death, resignation, or removal from office of ...
alone. The focus is to eliminate and prevent further disturbance from occurring and for this type of restoration requires prior research to understand the probability that the wetland will recover naturally. This is likely to be the first method of approach since it is the least intrusive and least expensive although some biophysical non-intrusive manipulation may be required to enhance the rate of succession to an acceptable level. Example methods include prescribed burns to small areas, promotion of site specific soil
microbiota Microbiota are the range of microorganisms that may be commensal, symbiotic, or pathogenic found in and on all multicellular organisms, including plants. Microbiota include bacteria, archaea, protists, fungi, and viruses, and have been found t ...
and plant growth using nucleation planting whereby plants radiate from an initial planting site, and promotion of niche diversity or increasing the range of niches to promote use by a variety of different species. These methods can make it easier for the natural species to flourish by removing environmental impediments and can speed up the process of succession.


Partial reconstruction

For this strategy, a mixture of natural regeneration and manipulated environmental control is used. This may require some engineering, and more intensive biophysical manipulations including ripping of
subsoil Subsoil is the layer of soil under the topsoil on the surface of the ground. Like topsoil, it is composed of a variable mixture of small particles such as sand, silt and clay, but with a much lower percentage of organic matter and humus, and it ...
,
agrichemical An agrochemical or agrichemical, a contraction of ''agricultural chemical'', is a chemical product used in industrial agriculture. Agrichemical refers to biocides (pesticides including insecticides, herbicides, fungicides and nematicides) and syn ...
applications of herbicides or insecticides, laying of mulch, mechanical seed dispersal, and tree planting on a large scale. In these circumstances the wetland is impaired and without human assistance it would not recover within an acceptable period of time as determined by ecologists. Methods of restoration used will have to be determined on a site by site basis as each location will require a different approach based on levels of disturbance and the local ecosystem dynamics.


Complete reconstruction

This most expensive and intrusive method of reconstruction requires engineering and ground up reconstruction. Because there is a redesign of the entire ecosystem it is important that the natural trajectory of the ecosystem be considered and that the plant species promoted will eventually return the ecosystem towards its natural trajectory.


Climate change aspects


Greenhouse gas emissions

In Southeast Asia,
peatswamp forests Peat swamp forests are tropical and subtropical moist broadleaf forests, tropical moist forests where waterlogged soil prevents dead leaves and wood from fully decomposing. Over time, this creates a thick layer of acidic peat. Large areas of th ...
and soils are being drained, burnt, mined, and overgrazed, contributing to climate change. As a result of peat drainage, the organic carbon that had built up over thousands of years and is normally under water is suddenly exposed to the air. The peat decomposes and is converted into carbon dioxide (CO2), which is then released into the atmosphere. Peat fires cause the same process to occur rapidly and in addition create enormous clouds of smoke that cross international borders, which now happens almost yearly in Southeast Asia. While peatlands constitute only 3% of the world's land area, their degradation produces 7% of all CO2 emissions.


Climate change mitigation

Many recent studies and reviews have favorably identified the potential for such coastal “
blue carbon Blue Carbon refers to organic carbon that is captured and stored by the world's oceanic and coastal ecosystems, mostly by algae, seagrasses, macroalgae, mangroves, salt marshes and other plants in coastal wetlands. The term Blue Carbon was coined ...
” ecosystems to provide a natural climate solution in two ways: by conservation, reducing the greenhouse gas emissions arising from the loss and degradation of such habitats, and by restoration, to increase carbon dioxide drawdown and its long-term storage. Text was copied from this source, which is available under
Creative Commons Attribution 4.0 International License
/ref> However, CO2 removal using coastal blue carbon restoration has questionable cost-effectiveness when considered only as a climate mitigation action, either for carbon-offsetting or for inclusion in
Nationally Determined Contributions A nationally determined contribution (NDC) or intended nationally determined contribution (INDC) is a non-binding national plan highlighting climate change mitigation, including climate-related targets for greenhouse gas emission reductions. These ...
. When wetlands are restored they have mitigation effects through their ability to sink carbon, converting a greenhouse gas ( carbon dioxide) to solid plant material through the process of photosynthesis, and also through their ability to store and regulate water. Wetlands store approximately 44.6 million tonnes of carbon per year globally (estimate from 2003). In salt marshes and mangrove swamps in particular, the average carbon sequestration rate is while
peatlands A mire, peatland, or quagmire is a wetland area dominated by living peat-forming plants. Mires arise because of incomplete decomposition of organic matter, usually litter from vegetation, due to water-logging and subsequent anoxia. All types ...
sequester approximately . Coastal wetlands, such as tropical mangroves and some temperate
salt marshes A salt marsh or saltmarsh, also known as a coastal salt marsh or a tidal marsh, is a coastal ecosystem in the upper coastal intertidal zone between land and open saltwater or brackish water that is regularly flooded by the tides. It is dominated ...
, are known to be sinks for carbon that otherwise contribute to climate change in its gaseous forms (carbon dioxide and methane). The ability of many tidal wetlands to store carbon and minimize methane flux from tidal sediments has led to sponsorship of
blue carbon Blue Carbon refers to organic carbon that is captured and stored by the world's oceanic and coastal ecosystems, mostly by algae, seagrasses, macroalgae, mangroves, salt marshes and other plants in coastal wetlands. The term Blue Carbon was coined ...
initiatives that are intended to enhance those processes.


Climate change adaptation

The restoration of coastal blue carbon ecosystems is highly advantageous for climate change adaptation, coastal protection, food provision and biodiversity conservation. Since the middle of the 20th century, human-caused climate change has resulted in observable changes in the global water cycle.Arias, P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner, J. Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P.W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R.P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J.G. Canadell, C. Cassou, A. Cherchi, W. Collins, W.D. Collins, S.L. Connors, S. Corti, F. Cruz, F.J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue Niang, F.J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V.  Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J.S. Fuglestvedt, J.C. Fyfe, et al., 2021
Technical Summary
I
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 33−144. doi:10.1017/9781009157896.002.
A warming climate makes extremely wet and very dry occurrences more severe, causing more severe floods and droughts. For this reason, some of the ecosystem services that wetlands provide (e.g. water storage and flood control, groundwater replenishment, shoreline stabilization and storm protection) are important for climate change adaptation measures. In most parts of the world and under all emission scenarios, water cycle variability and accompanying extremes are anticipated to rise more quickly than the changes of average values.Arias, P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner, J. Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P.W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R.P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J.G. Canadell, C. Cassou, A. Cherchi, W. Collins, W.D. Collins, S.L. Connors, S. Corti, F. Cruz, F.J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue Niang, F.J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V.  Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J.S. Fuglestvedt, J.C. Fyfe, et al., 2021
Technical Summary
I
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 33−144. doi:10.1017/9781009157896.002.


Valuation

The value of a wetland to local communities typically involves first mapping a region's wetlands, then assessing the functions and ecosystem services the wetlands provide individually and cumulatively, and finally evaluating that information to prioritize or rank individual wetlands or wetland types for conservation, management, restoration, or development. Over the longer term, it requires keeping inventories of known wetlands and monitoring a representative sample of the wetlands to determine changes due to both natural and human factors.


Assessment

Rapid assessment methods are used to score, rank, rate, or categorize various functions, ecosystem services, species, communities, levels of disturbance, and/or ecological health of a wetland or group of wetlands. This is often done to prioritize particular wetlands for conservation (avoidance) or to determine the degree to which loss or alteration of wetland functions should be compensated, such as by restoring degraded wetlands elsewhere or providing additional protections to existing wetlands. Rapid assessment methods are also applied before and after a wetland has been restored or altered, to help monitor or predict the effects of those actions on various wetland functions and the services they provide. Assessments are typically considered to be "rapid" when they require only a single visit to the wetland lasting less than one day, which in some cases may include interpretation of aerial imagery and
geographic information system A geographic information system (GIS) is a type of database containing Geographic data and information, geographic data (that is, descriptions of phenomena for which location is relevant), combined with Geographic information system software, sof ...
(GIS) analyses of existing spatial data, but not detailed post-visit laboratory analyses of water or biological samples. To achieve consistency among persons doing the assessment, rapid methods present indicator variables as questions or checklists on standardized data forms, and most methods standardize the scoring or rating procedure that is used to combine question responses into estimates of the levels of specified functions relative to the levels estimated in other wetlands ("calibration sites") assessed previously in a region. Rapid assessment methods, partly because they often use dozens of indicators pertaining to conditions surrounding a wetland as well as within the wetland itself, aim to provide estimates of wetland functions and services that are more accurate and repeatable than simply describing a wetland's class type. A need for wetland assessments to be rapid arises mostly when government agencies set deadlines for decisions affecting a wetland, or when the number of wetlands needing information on their functions or condition is large.


Inventory

Although developing a global inventory of wetlands has proven to be a large and difficult undertaking, many efforts at more local scales have been successful. Current efforts are based on available data, but both classification and spatial resolution have sometimes proven to be inadequate for regional or site-specific environmental management decision-making. It is difficult to identify small, long, and narrow wetlands within the landscape. Many of today's remote sensing satellites do not have sufficient spatial and spectral resolution to monitor wetland conditions, although multispectral IKONOS and QuickBird data may offer improved spatial resolutions once it is 4 m or higher. Majority of the pixels are just mixtures of several plant species or vegetation types and are difficult to isolate which translates into an inability to classify the vegetation that defines the wetland.


Monitoring and mapping

A wetland needs to be monitored over time to assess whether it is functioning at an ecologically sustainable level or whether it is becoming degraded. Degraded wetlands will suffer a loss in water quality, loss of sensitive species, and aberrant functioning of soil geochemical processes. Practically, many natural wetlands are difficult to monitor from the ground as they quite often are difficult to access and may require exposure to dangerous plants and animals as well as diseases borne by insects or other invertebrates. Therefore, mapping using aerial imagery is one effective tool to monitor a wetland, especially a large wetland, and can also be used to monitor the status of numerous wetlands throughout a watershed or region. Many remote sensing methods can be used to map wetlands. Remote-sensing technology permits the acquisition of timely digital data on a repetitive basis. This repeat coverage allows wetlands, as well as the adjacent land-cover and land-use types, to be monitored seasonally and/or annually. Using digital data provides a standardized data-collection procedure and an opportunity for data integration within a
geographic information system A geographic information system (GIS) is a type of database containing Geographic data and information, geographic data (that is, descriptions of phenomena for which location is relevant), combined with Geographic information system software, sof ...
.


Legislation


International efforts

* Ramsar Convention *
North American Waterfowl Management Plan The North American Waterfowl Management Plan (NAWMP) is an international plan to conserve waterfowl and migratory birds in North America. It was established in 1986 by Canada and the United States, and expanded to include Mexico in 1994. In the Uni ...


National efforts


United States

Each country and region tends to have its own definition of wetlands for legal purposes. In the United States, wetlands are defined as "those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and similar areas". This definition has been used in the enforcement of the
Clean Water Act The Clean Water Act (CWA) is the primary federal law in the United States governing water pollution. Its objective is to restore and maintain the chemical, physical, and biological integrity of the nation's waters; recognizing the responsibiliti ...
. Some US states, such as Massachusetts and
New York New York most commonly refers to: * New York City, the most populous city in the United States, located in the state of New York * New York (state), a state in the northeastern United States New York may also refer to: Film and television * '' ...
, have separate definitions that may differ from the federal government's. In the
United States Code In the law of the United States, the Code of Laws of the United States of America (variously abbreviated to Code of Laws of the United States, United States Code, U.S. Code, U.S.C., or USC) is the official compilation and codification of the ...
, the term wetland is defined "as land that (A) has a predominance of hydric soils, (B) is inundated or saturated by surface or groundwater at a frequency and duration sufficient to support a prevalence of hydrophytic vegetation typically adapted for life in saturated soil conditions and (C) under normal circumstances supports a prevalence of such vegetation." Related to these legal definitions, "normal circumstances" are expected to occur during the wet portion of the growing season under normal climatic conditions (not unusually dry or unusually wet), and in the absence of significant disturbance. It is not uncommon for a wetland to be dry for long portions of the growing season but under normal environmental conditions, the soils will be saturated to the surface or inundated creating anaerobic conditions persisting through the wet portion of the growing season.US Government Publishing Office. (2011
16 U.S. Code Chapter 58 Subchapter I, § 3801 – Definitions
Legal Information Institute, Cornell Law School, Ithaca.


Canada

*The Federal Policy on Wetland Conservation *Other Individual Provincial and Territorial Based Policies


Examples

The world's largest wetlands include the swamp forests of the Amazon River basin, the peatlands of the West Siberian Plain, the Pantanal in South America, and the Sundarbans in the Ganges-
Brahmaputra The Brahmaputra is a trans-boundary river which flows through Tibet, northeast India, and Bangladesh. It is also known as the Yarlung Tsangpo in Tibetan, the Siang/Dihang River in Arunachali, Luit in Assamese, and Jamuna River in Bangla. It ...
delta.


See also

*
Converted wetland A converted wetland is one that has been drainage, drained, Dredging, dredged, filled, leveled, or otherwise altered for the production of an crops, agricultural commodity. The definition is part of The Highly Erodible Land Conservation and Wetland ...
*
Groundwater-dependent ecosystems Groundwater-Dependent Ecosystems (or GDEs) are ecosystems that rely upon groundwater for their continued existence. Groundwater is water that has seeped down beneath Earth's surface and has come to reside within the pore spaces in soil and fractu ...
*
Paludification Paludification is the most common process by which peatlands in the boreal zone are formed. Formation The process is characterized by peat initialization on previously drier and vegetated habitats over inorganic soils, with no fully aquatic ...
*
Slough Slough () is a town and unparished area in the unitary authority of the same name in Berkshire, England, bordering west London. It lies in the Thames Valley, west of central London and north-east of Reading, at the intersection of the M4 ...
*


References

{{Authority control Aquatic ecology Environmental terminology Freshwater ecology Habitat Terrestrial biomes Bodies of water