HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a
binary relation In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs ...
is called well-founded (or wellfounded or foundational) on a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
or, more generally, a
class Class, Classes, or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used d ...
if every
non-empty In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, whil ...
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
has a
minimal element In mathematics, especially in order theory, a maximal element of a subset S of some preordered set is an element of S that is not smaller than any other element in S. A minimal element of a subset S of some preordered set is defined dually as an ...
with respect to ; that is, there exists an such that, for every , one does not have . In other words, a relation is well-founded if: (\forall S \subseteq X)\; \neq \varnothing \implies (\exists m \in S) (\forall s \in S) \lnot(s \mathrel m) Some authors include an extra condition that is set-like, i.e., that the elements less than any given element form a set. Equivalently, assuming the
axiom of dependent choice In mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. T ...
, a relation is well-founded when it contains no infinite descending chains, meaning there is no infinite sequence of elements of such that for every natural number . In
order theory Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article intr ...
, a
partial order In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable ...
is called well-founded if the corresponding strict order is a well-founded relation. If the order is a
total order In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( re ...
then it is called a
well-order In mathematics, a well-order (or well-ordering or well-order relation) on a set is a total ordering on with the property that every non-empty subset of has a least element in this ordering. The set together with the ordering is then calle ...
. In
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
, a set is called a well-founded set if the
set membership In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set. For example, given a set called containing the first four positive integers (A = \), one could say that "3 is an element of ", expressed ...
relation is well-founded on the
transitive closure In mathematics, the transitive closure of a homogeneous binary relation on a set (mathematics), set is the smallest Relation (mathematics), relation on that contains and is Transitive relation, transitive. For finite sets, "smallest" can be ...
of . The
axiom of regularity In mathematics, the axiom of regularity (also known as the axiom of foundation) is an axiom of Zermelo–Fraenkel set theory that states that every Empty set, non-empty Set (mathematics), set ''A'' contains an element that is Disjoint sets, disjoin ...
, which is one of the axioms of
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes suc ...
, asserts that all sets are well-founded. A relation is converse well-founded, upwards well-founded or Noetherian on , if the
converse relation In mathematics, the converse of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms ...
is well-founded on . In this case is also said to satisfy the
ascending chain condition In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly Ideal (ring theory), ideals in certain commutative rings. These conditions p ...
. In the context of
rewriting In mathematics, computer science, and logic, rewriting covers a wide range of methods of replacing subterms of a formula with other terms. Such methods may be achieved by rewriting systems (also known as rewrite systems, rewrite engines, or reduc ...
systems, a Noetherian relation is also called terminating.


Induction and recursion

An important reason that well-founded relations are interesting is because a version of
transfinite induction Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Induction by cases Let P(\alpha) be a property defined for a ...
can be used on them: if () is a well-founded relation, is some property of elements of , and we want to show that : holds for all elements of , it suffices to show that: : If is an element of and is true for all such that , then must also be true. That is, (\forall x \in X)\; \forall y \in X)\;[y\mathrelx \implies P(y)\implies P(x)">\mathrelx_\implies_P(y).html" ;"title="\forall y \in X)\;[y\mathrelx \implies P(y)">\forall y \in X)\;[y\mathrelx \implies P(y)\implies P(x)quad\text\quad(\forall x \in X)\,P(x). Well-founded induction is sometimes called Noetherian induction, Bourbaki, N. (1972) ''Elements of mathematics. Commutative algebra'', Addison-Wesley. after Emmy Noether">Nicolas Bourbaki">Bourbaki, N. (1972) ''Elements of mathematics. Commutative algebra'', Addison-Wesley. after Emmy Noether. On par with induction, well-founded relations also support construction of objects by transfinite recursion. Let be a binary relation#Relations over a set, set-like well-founded relation and a function that assigns an object to each pair of an element and a function on the initial segment of . Then there is a unique function such that for every , G(x) = F\left(x, G\vert_\right). That is, if we want to construct a function on , we may define using the values of for . As an example, consider the well-founded relation , where is the set of all
natural numbers In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positiv ...
, and is the graph of the successor function . Then induction on is the usual
mathematical induction Mathematical induction is a method for mathematical proof, proving that a statement P(n) is true for every natural number n, that is, that the infinitely many cases P(0), P(1), P(2), P(3), \dots  all hold. This is done by first proving a ...
, and recursion on gives
primitive recursion In computability theory, a primitive recursive function is, roughly speaking, a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop is fixed befor ...
. If we consider the order relation , we obtain
complete induction Mathematical induction is a method for proving that a statement P(n) is true for every natural number n, that is, that the infinitely many cases P(0), P(1), P(2), P(3), \dots  all hold. This is done by first proving a simple case, then ...
, and course-of-values recursion. The statement that is well-founded is also known as the
well-ordering principle In mathematics, the well-ordering principle states that every non-empty subset of nonnegative integers contains a least element. In other words, the set of nonnegative integers is well-ordered by its "natural" or "magnitude" order in which x pr ...
. There are other interesting special cases of well-founded induction. When the well-founded relation is the usual ordering on the class of all
ordinal numbers In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
, the technique is called
transfinite induction Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Induction by cases Let P(\alpha) be a property defined for a ...
. When the well-founded set is a set of recursively-defined data structures, the technique is called
structural induction Structural induction is a proof method that is used in mathematical logic (e.g., in the proof of Łoś' theorem), computer science, graph theory, and some other mathematical fields. It is a generalization of mathematical induction over natural ...
. When the well-founded relation is set membership on the universal class, the technique is known as ∈-induction. See those articles for more details.


Examples

Well-founded relations that are not totally ordered include: * The positive
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s , with the order defined by
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
divides In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisibl ...
and . * The set of all finite strings over a fixed alphabet, with the order defined by if and only if is a proper substring of . * The set of pairs of
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s, ordered by if and only if and . * Every class whose elements are sets, with the relation ∈ ("is an element of"). This is the
axiom of regularity In mathematics, the axiom of regularity (also known as the axiom of foundation) is an axiom of Zermelo–Fraenkel set theory that states that every Empty set, non-empty Set (mathematics), set ''A'' contains an element that is Disjoint sets, disjoin ...
. * The nodes of any finite
directed acyclic graph In mathematics, particularly graph theory, and computer science, a directed acyclic graph (DAG) is a directed graph with no directed cycles. That is, it consists of vertices and edges (also called ''arcs''), with each edge directed from one ...
, with the relation defined such that if and only if there is an edge from to . Examples of relations that are not well-founded include: * The negative integers , with the usual order, since any unbounded subset has no least element. * The set of strings over a finite alphabet with more than one element, under the usual (
lexicographic Lexicography is the study of lexicons and the art of compiling dictionaries. It is divided into two separate academic disciplines: * Practical lexicography is the art or craft of compiling, writing and editing dictionaries. * Theoretical lex ...
) order, since the sequence is an infinite descending chain. This relation fails to be well-founded even though the entire set has a minimum element, namely the empty string. * The set of non-negative
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s (or reals) under the standard ordering, since, for example, the subset of positive rationals (or reals) lacks a minimum.


Other properties

If is a well-founded relation and is an element of , then the descending chains starting at are all finite, but this does not mean that their lengths are necessarily bounded. Consider the following example: Let be the union of the positive integers with a new element ω that is bigger than any integer. Then is a well-founded set, but there are descending chains starting at ω of arbitrary great (finite) length; the chain has length for any . The
Mostowski collapse lemma In mathematical logic, the Mostowski collapse lemma, also known as the Shepherdson–Mostowski collapse, is a theorem of set theory introduced by and . Statement Suppose that ''R'' is a binary relation on a class ''X'' such that *''R'' is s ...
implies that set membership is a universal among the extensional well-founded relations: for any set-like well-founded relation on a class that is extensional, there exists a class such that is isomorphic to .


Reflexivity

A relation is said to be reflexive if holds for every in the domain of the relation. Every reflexive relation on a nonempty domain has infinite descending chains, because any constant sequence is a descending chain. For example, in the natural numbers with their usual order ≤, we have . To avoid these trivial descending sequences, when working with a partial order ≤, it is common to apply the definition of well foundedness (perhaps implicitly) to the alternate relation < defined such that if and only if and . More generally, when working with a
preorder In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive relation, reflexive and Transitive relation, transitive. The name is meant to suggest that preorders are ''almost'' partial orders, ...
≤, it is common to use the relation < defined such that if and only if and . In the context of the natural numbers, this means that the relation <, which is well-founded, is used instead of the relation ≤, which is not. In some texts, the definition of a well-founded relation is changed from the definition above to include these conventions.


References

* Just, Winfried and Weese, Martin (1998) ''Discovering Modern Set Theory. I'',
American Mathematical Society The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, ...
. * Karel Hrbáček &
Thomas Jech Thomas J. Jech (, ; born 29 January 1944 in Prague) is a mathematician specializing in set theory who was at Penn State for more than 25 years. Life He was educated at Charles University (his advisor was Petr Vopěnka) and from 2000 is at thInst ...
(1999) ''Introduction to Set Theory'', 3rd edition, "Well-founded relations", pages 251–5,
Marcel Dekker Marcel Dekker was a journal and encyclopedia publishing company with editorial boards found in New York City. Dekker encyclopedias are now published by CRC Press, part of the Taylor and Francis publishing group. History Initially a textbook publ ...
{{Order theory