HOME

TheInfoList



OR:

Weak localization is a physical effect which occurs in disordered electronic systems at very low temperatures. The effect manifests itself as a ''positive'' correction to the
resistivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
of a
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
or
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
. The name emphasizes the fact that weak localization is a precursor of
Anderson localization In condensed matter physics, Anderson localization (also known as strong localization) is the absence of diffusion of waves in a ''disordered'' medium. This phenomenon is named after the American physicist P. W. Anderson, who was the first to sug ...
, which occurs at strong disorder.


General principle

The effect is quantum-mechanical in nature and has the following origin: In a disordered electronic system, the
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
motion is diffusive rather than ballistic. That is, an electron does not move along a straight line, but experiences a series of random scatterings off impurities which results in a
random walk In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line \mathbb Z ...
. The
resistivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
of the system is related to the probability of an electron to propagate between two given points in space. Classical physics assumes that the total probability is just the sum of the probabilities of the paths connecting the two points. However
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
tells us that to find the total probability we have to sum up the quantum-mechanical amplitudes of the paths rather than the probabilities themselves. Therefore, the correct (quantum-mechanical) formula for the probability for an electron to move from a point A to a point B includes the classical part (individual probabilities of diffusive paths) and a number of interference terms (products of the amplitudes corresponding to different paths). These interference terms effectively make it more likely that a carrier will "wander around in a circle" than it would otherwise, which leads to an ''increase'' in the net resistivity. The usual formula for the conductivity of a metal (the so-called
Drude formula The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials (especially metals). Basically, Ohm's law was well established and stated that the current ''J'' and voltag ...
) corresponds to the former classical terms, while the weak localization correction corresponds to the latter quantum interference terms averaged over disorder realizations. The weak localization correction can be shown to come mostly from quantum interference between self-crossing paths in which an electron can propagate in the clock-wise and counter-clockwise direction around a loop. Due to the identical length of the two paths along a loop, the quantum phases cancel each other exactly and these (otherwise random in sign) quantum interference terms survive disorder averaging. Since it is much more likely to find a self-crossing trajectory in low dimensions, the weak localization effect manifests itself much stronger in low-dimensional systems (films and wires).


Weak anti-localization

In a system with spin–orbit coupling, the spin of a carrier is coupled to its momentum. The spin of the carrier rotates as it goes around a self-intersecting path, and the direction of this rotation is opposite for the two directions about the loop. Because of this, the two paths along any loop interfere ''destructively'' which leads to a ''lower'' net resistivity.


In two dimensions

In two dimensions the change in conductivity from applying a magnetic field, due to either weak localization or weak anti-localization can be described by the Hikami-Larkin-Nagaoka equation: :\sigma(B) - \sigma(0) = + \left \ln \left ( \right ) - \psi \left ( + \right ) \right :::::::+ \left \ln \left ( \right ) - \psi \left ( + \right ) \right :::::::- \left \ln \left ( \right ) - \psi \left ( + \right ) \right/math> \psi is the
digamma function In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function: :\psi(x)=\frac\ln\big(\Gamma(x)\big)=\frac\sim\ln-\frac. It is the first of the polygamma functions. It is strictly increasing and strict ...
. B_\phi is the phase coherence characteristic field, which is roughly the magnetic field required to destroy phase coherence, B_\text is the spin–orbit characteristic field which can be considered a measure of the strength of the spin–orbit interaction and B_e is the elastic characteristic field. The characteristic fields are better understood in terms of their corresponding characteristic lengths which are deduced from . l_\phi can then be understood as the distance traveled by an electron before it loses phase coherence, l_\text can be thought of as the distance traveled before the spin of the electron undergoes the effect of the spin–orbit interaction, and finally l_e is the mean free path. In the limit of strong spin–orbit coupling B_\text \gg B_\phi, the equation above reduces to: :\sigma(B) - \sigma(0) = \alpha \left \ln \left ( \right ) - \psi \left ( + \right ) \right In this equation \alpha is -1 for weak antilocalization and +1/2 for weak localization.


Magnetic field dependence

The strength of either weak localization or weak anti-localization falls off quickly in the presence of a magnetic field, which causes carriers to acquire an additional phase as they move around paths.


See also

* Coherent backscattering


References

{{DEFAULTSORT:Weak Localization Mesoscopic physics Condensed matter physics Electric and magnetic fields in matter