Vine–Matthews–Morley Hypothesis
   HOME

TheInfoList



OR:

The Vine–Matthews–Morley hypothesis, also known as the Morley–Vine–Matthews hypothesis, was the first key scientific test of the
seafloor spreading Seafloor spreading or Seafloor spread is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge. History of study Earlier theories by Alfred Wegener an ...
theory of
continental drift Continental drift is the hypothesis that the Earth's continents have moved over geologic time relative to each other, thus appearing to have "drifted" across the ocean bed. The idea of continental drift has been subsumed into the science of pla ...
and
plate tectonics Plate tectonics (from the la, label=Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of large ...
. Its key impact was that it allowed the rates of plate motions at
mid-ocean ridge A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a diverge ...
s to be computed. It states that the Earth's oceanic crust acts as a recorder of reversals in the
geomagnetic Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic fi ...
field direction as seafloor spreading takes place.


History

Harry Hess Harry Hess (born July 5, 1968) is a Canadian record producer, singer and guitarist best known as the frontman for the Canadian hard rock band Harem Scarem. Hess has used his recording studio (Vespa Music Group) to work with many famous acts, ...
proposed the
seafloor spreading Seafloor spreading or Seafloor spread is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge. History of study Earlier theories by Alfred Wegener an ...
hypothesis in 1960 (published in 1962); the term "spreading of the seafloor" was introduced by geophysicist
Robert S. Dietz Robert Sinclair Dietz (September 14, 1914 – May 19, 1995) was a scientist with the US Coast and Geodetic Survey. Dietz, born in Westfield, New Jersey, was a marine geologist, geophysicist and oceanographer who conducted pioneering research along ...
in 1961. According to Hess, seafloor was created at mid-oceanic ridges by the convection of the earth's mantle, pushing and spreading the older crust away from the ridge. Geophysicist Frederick John Vine and the Canadian geologist Lawrence W. Morley independently realized that if Hess's seafloor spreading theory was correct, then the rocks surrounding the mid-oceanic ridges should show symmetric patterns of magnetization reversals using newly collected magnetic surveys. Both of Morley's letters to ''
Nature Nature, in the broadest sense, is the physics, physical world or universe. "Nature" can refer to the phenomenon, phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. ...
'' (February 1963) and ''
Journal of Geophysical Research The ''Journal of Geophysical Research'' is a peer-reviewed scientific journal. It is the flagship journal of the American Geophysical Union. It contains original research on the physical, chemical, and biological processes that contribute to the un ...
'' (April 1963) were rejected, hence Vine and his PhD adviser at Cambridge University, Drummond Hoyle Matthews, were first to publish the theory in September 1963. Some colleagues were skeptical of the hypothesis because of the numerous assumptions made—seafloor spreading, geomagnetic reversals, and
remanent magnetism Remanence or remanent magnetization or residual magnetism is the magnetization left behind in a ferromagnetic material (such as iron) after an external magnetic field is removed. Colloquially, when a magnet is "magnetized", it has remanence. ...
—all hypotheses that were still not widely accepted. The Vine–Matthews–Morley hypothesis describes the magnetic reversals of oceanic crust. Further evidence for this hypothesis came from Cox and colleagues (1964) when they measured the remanent magnetization of lavas from land sites. Walter C. Pitman and J.R. Heirtzler offered further evidence with a remarkably symmetric magnetic anomaly profile from the Pacific-Antarctic Ridge.


Marine magnetic anomalies

The Vine–Matthews-Morley hypothesis correlates the symmetric magnetic patterns seen on the seafloor with geomagnetic field reversals. At mid-ocean ridges, new crust is created by the injection, extrusion, and solidification of magma. After the magma has cooled through the
Curie point In physics and materials science, the Curie temperature (''T''C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Cur ...
, ferromagnetism becomes possible and the magnetization direction of magnetic minerals in the newly formed crust orients parallel to the current background geomagnetic field
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
. Once fully cooled, these directions are locked into the crust and it becomes permanently magnetized. Lithospheric creation at the ridge is considered continuous and symmetrical as the new crust intrudes into the diverging plate boundary. The old crust moves laterally and equally on either side of the ridge. Therefore, as geomagnetic reversals occur, the crust on either side of the ridge will contain a record of remanent normal (parallel) or reversed (antiparallel) magnetizations in comparison to the current geomagnetic field. A
magnetometer A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, o ...
towed above (near bottom, sea surface, or airborne) the seafloor will record positive (high) or negative (low)
magnetic anomalies In geophysics, a magnetic anomaly is a local variation in the Earth's magnetic field resulting from variations in the chemistry or magnetism of the rocks. Mapping of variation over an area is valuable in detecting structures obscured by overlying ...
when over crust magnetized in the normal or reversed direction. The ridge crest is analogous to “twin-headed tape recorder”, recording the Earth's magnetic history. Typically there are positive magnetic anomalies over normally magnetized crust and negative anomalies over reversed crust. Local anomalies with a short
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
also exist, but are considered to be correlated with
bathymetry Bathymetry (; ) is the study of underwater depth of ocean floors (''seabed topography''), lake floors, or river floors. In other words, bathymetry is the underwater equivalent to hypsometry or topography. The first recorded evidence of water de ...
. Magnetic anomalies over mid-ocean ridges are most apparent at high magnetic latitudes, over north-south trending ridges at all latitudes away from the
magnetic equator Magnetic dip, dip angle, or magnetic inclination is the angle made with the horizontal by the Earth's magnetic field lines. This angle varies at different points on the Earth's surface. Positive values of inclination indicate that the magnetic fi ...
, and east-west trending spreading ridges at the magnetic equator. The intensity of the remanent magnetization in the crust is greater than the induced magnetization. Consequently, the shape and amplitude of the magnetic anomaly is controlled predominately by the primary remanent vector in the crust. In addition, where the anomaly is measured on Earth affects its shape when measured with a magnetometer. This is because the field vector generated by the magnetized crust and the direction of the Earth's magnetic field vector are both measured by the magnetometers used in marine surveys. Because the Earth's field vector is much stronger than the anomaly field, a modern magnetometer measures the sum of the Earth's field and the component of the anomaly field in the direction of the Earth's field. Sections of crust magnetized at high latitudes have magnetic vectors that dip steeply downward in a normal geomagnetic field. However, close to the magnetic south pole, magnetic vectors are inclined steeply upwards in a normal geomagnetic field. Therefore, in both these cases the anomalies are positive. At the equator the Earth's field vector is horizontal so that crust magnetized there will also align horizontal. Here, the orientation of the spreading ridge affects the anomaly shape and amplitude. The component of the vector that effects the anomaly is at a maximum when the ridge is aligned east-west and the magnetic profile crossing is north-south.


Impact

The hypothesis links seafloor spreading and geomagnetic reversals in a powerful manner, with each expanding knowledge of the other. Early in the history of investigating the hypothesis only a short record of geomagnetic field reversals was available for studies of rocks on land. This was sufficient to allow computing of spreading rates over the last 700,000 years on many mid-ocean ridges by locating the closest reversed crust boundary to the crest of a mid-ocean ridge. Marine magnetic anomalies were found later to span the vast flanks of the ridges. Drillcores into the crust on these ridge flanks allowed dating of the early and of the older anomalies. This in turn allowed design of a predicted geomagnetic time scale. With time, investigations married land and marine data to produce an accurate geomagnetic reversal time scale for almost 200 million years.


See also

*
Edward Bullard Sir Edward Crisp Bullard FRS (21 September 1907 – 3 April 1980) was a British geophysicist who is considered, along with Maurice Ewing, to have founded the discipline of marine geophysics. He developed the theory of the geodynamo, pioneered ...
*
Drummond Matthews Drummond Hoyle Matthews FRS (5 February 1931 – 20 July 1997), known as "Drum", was a British marine geologist and geophysicist and a key contributor to the theory of plate tectonics. His work, along with that of fellow Briton Fred Vine an ...
* Walter C. Pitman III * Fredrick Vine *
Geodynamo In physics, the dynamo theory proposes a mechanism by which a celestial body such as Earth or a star generates a magnetic field. The dynamo theory describes the process through which a rotating, convecting, and electrically conducting fluid can ...
*
Lamont–Doherty Earth Observatory The Lamont–Doherty Earth Observatory (LDEO) is the scientific research center of the Columbia Climate School, and a unit of The Earth Institute at Columbia University. It focuses on climate and earth sciences and is located on a 189-acre (64 h ...


References

* * * {{DEFAULTSORT:Vine-Matthews-Morley hypothesis Geophysics History of Earth science Plate tectonics Geology theories