HOME

TheInfoList



OR:

In
graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conne ...
, an edge contraction is an
operation Operation or Operations may refer to: Arts, entertainment and media * ''Operation'' (game), a battery-operated board game that challenges dexterity * Operation (music), a term used in musical set theory * ''Operations'' (magazine), Multi-Ma ...
that removes an edge from a
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discre ...
while simultaneously merging the two vertices that it previously joined. Edge contraction is a fundamental operation in the theory of
graph minor In graph theory, an undirected graph is called a minor of the graph if can be formed from by deleting edges and vertices and by contracting edges. The theory of graph minors began with Wagner's theorem that a graph is planar if and only if ...
s. Vertex identification is a less restrictive form of this operation.


Definition

The edge contraction operation occurs relative to a particular edge, e. The edge e is removed and its two incident vertices, u and v, are merged into a new vertex w, where the edges incident to w each correspond to an edge incident to either u or v. More generally, the operation may be performed on a set of edges by contracting each edge (in any order). The resulting induced graph is sometimes written as G/e. (Contrast this with G \setminus e, which means removing the edge e.) As defined below, an edge contraction operation may result in a graph with
multiple edge In graph theory, multiple edges (also called parallel edges or a multi-edge), are, in an undirected graph, two or more edges that are incident to the same two vertices, or in a directed graph, two or more edges with both the same tail vertex a ...
s even if the original graph was a
simple graph In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called '' ve ...
. However, some authors disallow the creation of multiple edges, so that edge contractions performed on simple graphs always produce simple graphs.


Formal definition

Let G = (V, E) be a graph (''or
directed graph In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. Definition In formal terms, a directed graph is an ordered pa ...
'') containing an edge e = (u, v) with u \neq v. Let f be a function that maps every vertex in V \setminus\ to itself, and otherwise, maps it to a new vertex w. The contraction of e results in a new graph G' = (V', E'), where V' = (V \setminus\)\cup\, E' = E \setminus \, and for every x \in V, x' = f(x)\in V' is incident to an edge e' \in E' if and only if, the corresponding edge, e \in E is incident to x in G.


Vertex identification

Vertex identification (sometimes called vertex contraction) removes the restriction that the ''contraction'' must occur over vertices sharing an incident edge. (Thus, edge contraction is a special case of vertex identification.) The operation may occur on any pair (or subset) of vertices in the graph. Edges between two ''contracting'' vertices are sometimes removed. If v and v' are vertices of distinct components of G, then we can create a new graph G' by identifying v and v' in G as a new vertex \textbf in G'. More generally, given a
partition Partition may refer to: Computing Hardware * Disk partitioning, the division of a hard disk drive * Memory partition, a subdivision of a computer's memory, usually for use by a single job Software * Partition (database), the division of a ...
of the vertex set, one can identify vertices in the partition; the resulting graph is known as a
quotient graph In graph theory, a quotient graph ''Q'' of a graph ''G'' is a graph whose vertices are blocks of a partition of the vertices of ''G'' and where block ''B'' is adjacent to block ''C'' if some vertex in ''B'' is adjacent to some vertex in ''C'' with r ...
.


Vertex cleaving

Vertex cleaving, which is the same as vertex splitting, means one vertex is being split into two, where these two new vertices are adjacent to the vertices that the original vertex was adjacent to. This is a reverse operation of vertex identification, although in general for vertex identification, adjacent vertices of the two identified vertices are not the same set.


Path contraction

Path contraction occurs upon the set of edges in a
path A path is a route for physical travel – see Trail. Path or PATH may also refer to: Physical paths of different types * Bicycle path * Bridle path, used by people on horseback * Course (navigation), the intended path of a vehicle * Desire p ...
that ''contract'' to form a single edge between the endpoints of the path. Edges incident to vertices along the path are either eliminated, or arbitrarily (or systematically) connected to one of the endpoints.


Twisting

Consider two disjoint graphs G_1 and G_2, where G_1 contains vertices u_1 and v_1 and G_2 contains vertices u_2 and v_2. Suppose we can obtain the graph G by identifying the vertices u_1 of G_1 and u_2 of G_2 as the vertex u of G and identifying the vertices v_1 of G_1 and v_2 of G_2 as the vertex v of G. In a ''twisting'' G' of G with respect to the vertex set \, we identify, instead, u_1 with v_2 and v_1 with u_2.


Applications

Both edge and vertex contraction techniques are valuable in
proof by induction Mathematical induction is a method for mathematical proof, proving that a statement ''P''(''n'') is true for every natural number ''n'', that is, that the infinitely many cases ''P''(0), ''P''(1), ''P''(2), ''P''(3), ...  all hold. Infor ...
on the number of vertices or edges in a graph, where it can be assumed that a property holds for all smaller graphs and this can be used to prove the property for the larger graph. Edge contraction is used in the recursive formula for the number of
spanning tree In the mathematical field of graph theory, a spanning tree ''T'' of an undirected graph ''G'' is a subgraph that is a tree which includes all of the vertices of ''G''. In general, a graph may have several spanning trees, but a graph that is not ...
s of an arbitrary
connected graph In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more isolated subgrap ...
, and in the recurrence formula for the
chromatic polynomial The chromatic polynomial is a graph polynomial studied in algebraic graph theory, a branch of mathematics. It counts the number of graph colorings as a function of the number of colors and was originally defined by George David Birkhoff to study ...
of a simple graph. Contractions are also useful in structures where we wish to simplify a graph by identifying vertices that represent essentially equivalent entities. One of the most common examples is the reduction of a general
directed graph In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. Definition In formal terms, a directed graph is an ordered pa ...
to an
acyclic directed graph In mathematics, particularly graph theory, and computer science, a directed acyclic graph (DAG) is a directed graph with no directed cycles. That is, it consists of vertices and edges (also called ''arcs''), with each edge directed from one ve ...
by contracting all of the vertices in each
strongly connected component In the mathematical theory of directed graphs, a graph is said to be strongly connected if every vertex is reachable from every other vertex. The strongly connected components of an arbitrary directed graph form a partition into subgraphs that a ...
. If the relation described by the graph is transitive, no information is lost as long as we label each vertex with the set of labels of the vertices that were contracted to form it. Another example is the coalescing performed in
global graph coloring register allocation In compiler optimization, register allocation is the process of assigning local automatic variables and expression results to a limited number of processor registers. Register allocation can happen over a basic block (''local register allocati ...
, where vertices are contracted (where it is safe) in order to eliminate move operations between distinct variables. Edge contraction is used in 3D modelling packages (either manually, or through some feature of the modelling software) to consistently reduce vertex count, aiding in the creation of low-polygon models.


See also

*
Subdivision (graph theory) In graph theory, two graphs G and G' are homeomorphic if there is a graph isomorphism from some subdivision of G to some subdivision of G'. If the edges of a graph are thought of as lines drawn from one vertex to another (as they are usually depi ...


Notes


References

* * * *


External links

*{{MathWorld, id=EdgeContraction, title=Edge Contraction Graph operations