In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a
polytope
In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
(e.g. a
polygon
In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed ''polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two to ...
or
polyhedron
In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.
A convex polyhedron is the convex hull of finitely many points, not all on ...
) or a
tiling
Tiling may refer to:
*The physical act of laying tiles
* Tessellations
Computing
*The compiler optimization of loop tiling
*Tiled rendering, the process of subdividing an image by regular grid
*Tiling window manager
People
*Heinrich Sylvester T ...
is isogonal or vertex-transitive if all its
vertices are equivalent under the
symmetries
Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
of the figure. This implies that each vertex is surrounded by the same kinds of
face
The face is the front of an animal's head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may aff ...
in the same or reverse order, and with the same
angles
The Angles ( ang, Ængle, ; la, Angli) were one of the main Germanic peoples who settled in Great Britain in the post-Roman period. They founded several kingdoms of the Heptarchy in Anglo-Saxon England. Their name is the root of the name ...
between corresponding faces.
Technically, one says that for any two vertices there exists a symmetry of the polytope
mapping the first
isometrically onto the second. Other ways of saying this are that the
group of automorphisms of the polytope ''
acts transitively'' on its vertices, or that the vertices lie within a single ''
symmetry orbit''.
All vertices of a finite -dimensional isogonal figure exist on an
-sphere.
The term isogonal has long been used for polyhedra. Vertex-transitive is a synonym borrowed from modern ideas such as
symmetry groups and
graph theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conne ...
.
The
pseudorhombicuboctahedron
In geometry, the elongated square gyrobicupola or pseudo-rhombicuboctahedron is one of the Johnson solids (). It is not usually considered to be an Archimedean solid, even though its faces consist of regular polygons that meet in the same patt ...
which is ''not'' isogonaldemonstrates that simply asserting that "all vertices look the same" is not as restrictive as the definition used here, which involves the group of isometries preserving the polyhedron or tiling.
Isogonal polygons and apeirogons
All
regular polygons
In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
,
apeirogon
In geometry, an apeirogon () or infinite polygon is a generalized polygon with a countably infinite number of sides. Apeirogons are the two-dimensional case of infinite polytopes.
In some literature, the term "apeirogon" may refer only to th ...
s and
regular star polygon
In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
s are ''isogonal''. The
dual of an isogonal polygon is an
isotoxal polygon.
Some even-sided polygons and
apeirogon
In geometry, an apeirogon () or infinite polygon is a generalized polygon with a countably infinite number of sides. Apeirogons are the two-dimensional case of infinite polytopes.
In some literature, the term "apeirogon" may refer only to th ...
s which alternate two edge lengths, for example a
rectangle, are ''isogonal''.
All planar isogonal 2''n''-gons have
dihedral symmetry
In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, g ...
(D
''n'', ''n'' = 2, 3, ...) with reflection lines across the mid-edge points.
Isogonal polyhedra and 2D tilings
An isogonal polyhedron and 2D tiling has a single kind of vertex. An isogonal polyhedron with all regular faces is also a
uniform polyhedron
In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive (i.e., there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent.
Uniform polyhedra may be regular (if also fa ...
and can be represented by a
notation sequencing the faces around each vertex. Geometrically distorted variations of uniform polyhedra and tilings can also be given the vertex configuration.
Isogonal polyhedra and 2D tilings may be further classified:
* ''
Regular'' if it is also
isohedral
In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruent ...
(face-transitive) and
isotoxal (edge-transitive); this implies that every face is the same kind of
regular polygon
In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
.
* ''
Quasi-regular'' if it is also
isotoxal (edge-transitive) but not
isohedral
In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruent ...
(face-transitive).
* ''
Semi-regular'' if every face is a regular polygon but it is not
isohedral
In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruent ...
(face-transitive) or
isotoxal (edge-transitive). (Definition varies among authors; e.g. some exclude solids with dihedral symmetry, or nonconvex solids.)
* ''
Uniform
A uniform is a variety of clothing worn by members of an organization while participating in that organization's activity. Modern uniforms are most often worn by armed forces and paramilitary organizations such as police, emergency services, ...
'' if every face is a regular polygon, i.e. it is regular, quasiregular or semi-regular.
* ''Semi-uniform'' if its elements are also isogonal.
* ''Scaliform'' if all the edges are the same length.
* ''
Noble
A noble is a member of the nobility.
Noble may also refer to:
Places Antarctica
* Noble Glacier, King George Island
* Noble Nunatak, Marie Byrd Land
* Noble Peak, Wiencke Island
* Noble Rocks, Graham Land
Australia
* Noble Island, Gr ...
'' if it is also
isohedral
In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruent ...
(face-transitive).
''N'' dimensions: Isogonal polytopes and tessellations
These definitions can be extended to higher-dimensional
polytope
In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
s and
tessellations
A tessellation or tiling is the covering of a surface, often a plane (mathematics), plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to high-dimensional ...
. All
uniform polytope
In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude vert ...
s are ''isogonal'', for example, the
uniform 4-polytope
In geometry, a uniform 4-polytope (or uniform polychoron) is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.
There are 47 non-prismatic convex uniform 4-polytopes. Th ...
s and
convex uniform honeycomb
In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells.
Twenty-eight such honeycombs are known:
* the familiar cubic honeycomb and 7 tr ...
s.
The
dual of an isogonal polytope is an
isohedral figure
In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congrue ...
, which is transitive on its
facets
A facet is a flat surface of a geometric shape, e.g., of a cut gemstone.
Facet may also refer to:
Arts, entertainment, and media
* ''Facets'' (album), an album by Jim Croce
* ''Facets'', a 1980 album by jazz pianist Monty Alexander and his tri ...
.
''k''-isogonal and ''k''-uniform figures
A polytope or tiling may be called ''k''-isogonal if its vertices form ''k'' transitivity classes. A more restrictive term, ''k''-uniform is defined as an ''k-isogonal figure'' constructed only from
regular polygon
In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
s. They can be represented visually with colors by different
uniform coloring
In geometry, a uniform coloring is a property of a uniform figure (uniform tiling or uniform polyhedron) that is colored to be vertex-transitive. Different symmetries can be expressed on the same geometric figure with the faces following differ ...
s.
See also
*
Edge-transitive
In geometry, a polytope (for example, a polygon or a polyhedron) or a tiling is isotoxal () or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given t ...
(Isotoxal figure)
*
Face-transitive
In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congrue ...
(Isohedral figure)
References
* Peter R. Cromwell, ''Polyhedra'', Cambridge University Press 1997, , p. 369 Transitivity
* (p. 33 ''k-isogonal'' tiling, p. 65 ''k-uniform tilings'')
External links
*
Isogonal Kaleidoscopical Polyhedra Vladimir L. Bulatov, Physics Department, Oregon State University, Corvallis, Presented at Mosaic2000, Millennial Open Symposium on the Arts and Interdisciplinary Computing, 21–24 August 2000, Seattle, W
VRML models*
ttp://probabilitysports.com/tilings.html List of n-uniform tilings* (Also uses term k-uniform for k-isogonal)
{{DEFAULTSORT:Isogonal Figure
Polyhedra
Polytopes