HOME

TheInfoList



OR:

In differential geometry, Vermeil's theorem essentially states that the
scalar curvature In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry ...
is the only (non-trivial) absolute invariant among those of prescribed type suitable for
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
’s theory of
General Relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
. The theorem was proved by the German mathematician Hermann Vermeil in 1917.


Standard version of the theorem

The theorem states that the
Ricci scalar In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry ...
RLet us recall that
Ricci scalar In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry ...
R is linear in the second derivatives of the
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allo ...
g_, quadratic in the first derivatives and contains the inverse matrix g^, which is a rational function of the components g_.
is the only scalar invariant (or absolute invariant) linear in the second derivatives of the
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allo ...
g_.


See also

*
Scalar curvature In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry ...
*
Differential invariant In mathematics, a differential invariant is an invariant for the action of a Lie group on a space that involves the derivatives of graphs of functions in the space. Differential invariants are fundamental in projective differential geometry, and t ...
*
Einstein–Hilbert action The Einstein–Hilbert action (also referred to as Hilbert action) in general relativity is the action that yields the Einstein field equations through the stationary-action principle. With the metric signature, the gravitational part of the act ...
*
Lovelock's theorem Lovelock's theorem of general relativity says that from a local gravitational action which contains only second derivatives of the four-dimensional spacetime metric, then the only possible equations of motion are the Einstein field equations. ...


Notes


References

* * {{DEFAULTSORT:Vermeil's theorem Theorems in differential geometry Invariant theory