Vagusstoff2
   HOME

TheInfoList



OR:

Vagusstoff (literally translated from German as "Vagus Substance") refers to the substance released by stimulation of the vagus nerve which causes a reduction in the heart rate. Discovered in 1921 by physiologist Otto Loewi, ''vagusstoff'' was the first confirmation of chemical
synaptic transmission Neurotransmission (Latin: ''transmissio'' "passage, crossing" from ''transmittere'' "send, let through") is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron (the presynaptic neuron), ...
and the first
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neuro ...
ever discovered. It was later confirmed to be
acetylcholine Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Part ...
, which was first identified by Sir Henry Hallett Dale in 1914. Because of his pioneering experiments, in 1936 Loewi was awarded the Nobel Prize in Physiology or Medicine, which he shared with Dale.


The discovery of ''Vagusstoff''

By the time Loewi began his experiments there was much discussion among scientists whether communication between
nerve A nerve is an enclosed, cable-like bundle of nerve fibers (called axons) in the peripheral nervous system. A nerve transmits electrical impulses. It is the basic unit of the peripheral nervous system. A nerve provides a common pathway for the e ...
s and
muscle Skeletal muscles (commonly referred to as muscles) are organs of the vertebrate muscular system and typically are attached by tendons to bones of a skeleton. The muscle cells of skeletal muscles are much longer than in the other types of muscl ...
s was chemical or electrical by nature. Experiments by
Luigi Galvani Luigi Galvani (, also ; ; la, Aloysius Galvanus; 9 September 1737 – 4 December 1798) was an Italian physician, physicist, biologist and philosopher, who studied animal electricity. In 1780, he discovered that the muscles of dead frogs' legs ...
in the 18th century had demonstrated that electrical stimulation of the frog
sciatic nerve The sciatic nerve, also called the ischiadic nerve, is a large nerve in humans and other vertebrate animals which is the largest branch of the sacral plexus and runs alongside the hip joint and down the lower limb. It is the longest and widest si ...
resulted in twitching of the leg muscles, and from this he developed the concept of bioelectricity. This led to the idea that direct electrical contact between nerves and muscles mediated transmission of excitation. However, work by John Newport Langley had suggested that in the
autonomic nervous system The autonomic nervous system (ANS), formerly referred to as the vegetative nervous system, is a division of the peripheral nervous system that supplies viscera, internal organs, smooth muscle and glands. The autonomic nervous system is a control ...
communication in the ciliary ganglion was chemical. Loewi's experiments, published in 192

finally settled the issue, proving that synaptic transmission was chemical. Loewi performed a very simple yet elegant experiment. Using an isolated frog heart he had previously found that stimulation of the vagus nerve resulted in a slowing of the heart rate, while stimulation of the sympathetic nerve caused the heart rate to speed up (Figure 1). He reasoned that stimulation of either the vagus or sympathetic nerve would cause the nerve terminal to release a substance which would either slow or accelerate the heart rate. To prove this, he took a frog heart, which had been cannulated in order to perfuse the fluid surrounding the heart, and electrically stimulated the vagus nerve until the heart rate slowed. He then collected the fluid surrounding the heart and added it to a second frog heart which had been stripped of its vagal and sympathetic nerves. By adding the fluid surrounding the first heart to the second heart, he caused the heart rate of the second heart to slow down. This proved that stimulation of the vagus nerve caused the release of a substance which acted upon the heart tissue and directly caused the heart rate to slow down. (Figure 2) This substance was called ''vagusstoff''. ''Vagustoff'' was later confirmed to be
acetylcholine Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Part ...
and was found to be the principal neurotransmitter in the
parasympathetic nervous system The parasympathetic nervous system (PSNS) is one of the three divisions of the autonomic nervous system, the others being the sympathetic nervous system and the enteric nervous system. The enteric nervous system is sometimes considered part of ...
. In an interesting aside, Loewi apparently had the idea for his experiment in a dream. He wrote it down in the middle of the night but the next morning could not decipher his writing. He eventually had the same dream on another night, and decided to run to the laboratory to perform the experiment in the middle of the night. About this incident, Loewi writes: :''On mature consideration, in the cold light of the morning, I would not have done it. After all, it was an unlikely enough assumption that the vagus should secrete an inhibitory substance; it was still more unlikely that a chemical substance that was supposed to be effective at very close range between nerve terminal and muscle be secreted in such large amounts that it would spill over and, after being diluted by the perfusion fluid, still be able to inhibit another heart.'' (Loewi 1921) Loewi was fortunate in his choice of experimental preparation. In the species of frog used (''
Rana esculenta The edible frog (''Pelophylax'' kl. ''esculentus'') is a species of common European frog, also known as the common water frog or green frog (however, this latter term is also used for the North American species ''Rana clamitans''). It is used ...
''), the vagus contains both inhibitory and stimulatory fibers. In the winter, inhibitory fibers predominate, so Loewi was also fortunate to have performed his experiments in February or March. Additionally,
acetylcholinesterase Acetylcholinesterase (HGNC symbol ACHE; EC 3.1.1.7; systematic name acetylcholine acetylhydrolase), also known as AChE, AChase or acetylhydrolase, is the primary cholinesterase in the body. It is an enzyme Enzymes () are proteins that a ...
activity (the enzyme that degrades acetylcholine) is low, particularly in an unheated laboratory, allowing the neurotransmitter to remain long enough to be collected and applied to a second heart. Thanks to this confluence of events, Loewi was able to describe the existence of ''vagusstoff'' and prove the existence of chemical synaptic transmission.


See also

*
Acetylcholine Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Part ...
* Otto Loewi * Vagus nerve *
Synapse In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or to the target effector cell. Synapses are essential to the transmission of nervous impulses from ...


Sources

* * * J.G. Nicholls, A.R. Martin, B.G. Wallace and P.A. Fuchs. "From Neuron to Brain". 4th ed. Sinauer Associates, Sunderland, MA. {{Nobel_Prize_in_Physiology_or_Medicine Neurochemistry History of neuroscience