VEV
   HOME

TheInfoList



OR:

In
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles a ...
the vacuum expectation value (also called condensate or simply VEV) of an
operator Operator may refer to: Mathematics * A symbol indicating a mathematical operation * Logical operator or logical connective in mathematical logic * Operator (mathematics), mapping that acts on elements of a space to produce elements of another ...
is its average or
expectation value In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a l ...
in the
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often di ...
. The vacuum expectation value of an operator O is usually denoted by \langle O\rangle. One of the most widely used examples of an observable physical effect that results from the vacuum expectation value of an operator is the
Casimir effect In quantum field theory, the Casimir effect is a physical force acting on the macroscopic boundaries of a confined space which arises from the quantum fluctuations of the field. It is named after the Dutch physicist Hendrik Casimir, who pred ...
. This concept is important for working with
correlation functions The cross-correlation matrix of two random vectors is a matrix containing as elements the cross-correlations of all pairs of elements of the random vectors. The cross-correlation matrix is used in various digital signal processing algorithms. D ...
in
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles a ...
. It is also important in
spontaneous symmetry breaking Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or ...
. Examples are: *The
Higgs field The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standa ...
has a vacuum expectation value of 246
GeV GEV may refer to: * ''G.E.V.'' (board game), a tabletop game by Steve Jackson Games * Ashe County Airport, in North Carolina, United States * Gällivare Lapland Airport, in Sweden * Generalized extreme value distribution * Gev Sella, Israeli-South ...
. This nonzero value underlies the
Higgs mechanism In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other bei ...
of the
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. I ...
. This value is given by v = 1/\sqrt = 2M_W/g \approx 246.22\, \rm, where ''MW'' is the mass of the W Boson, G_F^0 the reduced Fermi constant, and the weak isospin coupling, in natural units. It is also near the limit of the most massive nuclei, at v = 264.3 Da. *The
chiral condensate A fermionic condensate or Fermi–Dirac condensate is a superfluid phase formed by fermionic particles at low temperatures. It is closely related to the Bose–Einstein condensate, a superfluid phase formed by bosonic atoms under similar condi ...
in
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a ty ...
, about a factor of a thousand smaller than the above, gives a large effective mass to
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All common ...
s, and distinguishes between phases of quark matter. This underlies the bulk of the mass of most hadrons. *The
gluon condensate In quantum chromodynamics (QCD), the gluon condensate is a non-perturbative property of the QCD vacuum which could be partly responsible for giving masses to light mesons. If the gluon field tensor is represented as Gμν, then the gluon condensat ...
in
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a ty ...
may also be partly responsible for masses of hadrons. The observed
Lorentz invariance In a relativistic theory of physics, a Lorentz scalar is an expression, formed from items of the theory, which evaluates to a scalar, invariant under any Lorentz transformation. A Lorentz scalar may be generated from e.g., the scalar product of ...
of space-time allows only the formation of condensates which are
Lorentz scalar In a relativistic theory of physics, a Lorentz scalar is an expression, formed from items of the theory, which evaluates to a scalar, invariant under any Lorentz transformation. A Lorentz scalar may be generated from e.g., the scalar product of ve ...
s and have vanishing charge. Thus
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
condensates must be of the form \langle\overline\psi\psi\rangle, where ψ is the fermion field. Similarly a
tensor field In mathematics and physics, a tensor field assigns a tensor to each point of a mathematical space (typically a Euclidean space or manifold). Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analys ...
, Gμν, can only have a scalar expectation value such as \langle G_G^\rangle. In some
vacua A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often di ...
of string theory, however, non-scalar condensates are found. If these describe our
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. A ...
, then Lorentz symmetry violation may be observable.


See also

*
Wightman axioms In mathematical physics, the Wightman axioms (also called Gårding–Wightman axioms), named after Arthur Wightman, are an attempt at a mathematically rigorous formulation of quantum field theory. Arthur Wightman formulated the axioms in the ear ...
*
Correlation function (quantum field theory) In quantum field theory, correlation functions, often referred to as correlators or Green's functions, are vacuum expectation values of time-ordered products of field operators. They are a key object of study in quantum field theory where the ...
*
Vacuum energy Vacuum energy is an underlying background energy that exists in space throughout the entire Universe. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum. The effects of vacuum energy can be experiment ...
*
Dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the unive ...
*
Spontaneous symmetry breaking Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or ...


References

Quantum field theory Standard Model {{Quantum-stub