HOME

TheInfoList



OR:

In
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical discipli ...
, a universal Turing machine (UTM) is a
Turing machine A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer alg ...
that can simulate an arbitrary Turing machine on arbitrary input. The universal machine essentially achieves this by reading both the description of the machine to be simulated as well as the input to that machine from its own tape.
Alan Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical ...
introduced the idea of such a machine in 1936–1937. This principle is considered to be the origin of the idea of a
stored-program computer A stored-program computer is a computer that stores program instructions in electronically or optically accessible memory. This contrasts with systems that stored the program instructions with plugboards or similar mechanisms. The definition ...
used by
John von Neumann John von Neumann (; hu, Neumann János Lajos, ; December 28, 1903 – February 8, 1957) was a Hungarian-American mathematician, physicist, computer scientist, engineer and polymath. He was regarded as having perhaps the widest c ...
in 1946 for the "Electronic Computing Instrument" that now bears von Neumann's name: the
von Neumann architecture The von Neumann architecture — also known as the von Neumann model or Princeton architecture — is a computer architecture based on a 1945 description by John von Neumann, and by others, in the '' First Draft of a Report on the EDVAC''. T ...
. Martin Davis, ''The universal computer : the road from Leibniz to Turing'' (2017) In terms of
computational complexity In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) ...
, a multi-tape universal Turing machine need only be slower by
logarithm In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 ...
ic factor compared to the machines it simulates.


Introduction

Every Turing machine computes a certain fixed
partial Partial may refer to: Mathematics *Partial derivative, derivative with respect to one of several variables of a function, with the other variables held constant ** ∂, a symbol that can denote a partial derivative, sometimes pronounced "partial d ...
computable function from the input strings over its
alphabet An alphabet is a standardized set of basic written graphemes (called letters) that represent the phonemes of certain spoken languages. Not all writing systems represent language in this way; in a syllabary, each character represents a syllab ...
. In that sense it behaves like a computer with a fixed program. However, we can encode the action table of any Turing machine in a string. Thus we can construct a Turing machine that expects on its tape a string describing an action table followed by a string describing the input tape, and computes the tape that the encoded Turing machine would have computed. Turing described such a construction in complete detail in his 1936 paper:


Stored-program computer

Davis Davis may refer to: Places Antarctica * Mount Davis (Antarctica) * Davis Island (Palmer Archipelago) * Davis Valley, Queen Elizabeth Land Canada * Davis, Saskatchewan, an unincorporated community * Davis Strait, between Nunavut and Gre ...
makes a persuasive argument that Turing's conception of what is now known as "the stored-program computer", of placing the "action table"—the instructions for the machine—in the same "memory" as the input data, strongly influenced
John von Neumann John von Neumann (; hu, Neumann János Lajos, ; December 28, 1903 – February 8, 1957) was a Hungarian-American mathematician, physicist, computer scientist, engineer and polymath. He was regarded as having perhaps the widest c ...
's conception of the first American discrete-symbol (as opposed to analog) computer—the EDVAC. Davis quotes ''Time'' magazine to this effect, that "everyone who taps at a keyboard ... is working on an incarnation of a Turing machine", and that "John von Neumann uilton the work of Alan Turing" (Davis 2000:193 quoting ''Time'' magazine of 29 March 1999). Davis makes a case that Turing's Automatic Computing Engine (ACE) computer "anticipated" the notions of microprogramming (
microcode In processor design, microcode (μcode) is a technique that interposes a layer of computer organization between the central processing unit (CPU) hardware and the programmer-visible instruction set architecture of a computer. Microcode is a la ...
) and
RISC In computer engineering, a reduced instruction set computer (RISC) is a computer designed to simplify the individual instructions given to the computer to accomplish tasks. Compared to the instructions given to a complex instruction set comp ...
processors (Davis 2000:188). Knuth cites Turing's work on the ACE computer as designing "hardware to facilitate subroutine linkage" (Knuth 1973:225); Davis also references this work as Turing's use of a hardware "stack" (Davis 2000:237 footnote 18). As the Turing Machine was encouraging the construction of
computers A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These prog ...
, the UTM was encouraging the development of the fledgling
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical discipli ...
s. An early, if not the very first, assembler was proposed "by a young hot-shot programmer" for the EDVAC (Davis 2000:192). Von Neumann's "first serious program ... asto simply sort data efficiently" (Davis 2000:184). Knuth observes that the subroutine return embedded in the program itself rather than in special registers is attributable to von Neumann and Goldstine. Knuth furthermore states that Davis briefly mentions operating systems and compilers as outcomes of the notion of program-as-data (Davis 2000:185). Some, however, might raise issues with this assessment. At the time (mid-1940s to mid-1950s) a relatively small cadre of researchers were intimately involved with the architecture of the new "digital computers". Hao Wang (1954), a young researcher at this time, made the following observation: Wang hoped that his paper would "connect the two approaches". Indeed, Minsky confirms this: "that the first formulation of Turing-machine theory in computer-like models appears in Wang (1957)" (Minsky 1967:200). Minsky goes on to demonstrate Turing equivalence of a counter machine. With respect to the reduction of computers to simple Turing equivalent models (and vice versa), Minsky's designation of Wang as having made "the first formulation" is open to debate. While both Minsky's paper of 1961 and Wang's paper of 1957 are cited by Shepherdson and Sturgis (1963), they also cite and summarize in some detail the work of European mathematicians Kaphenst (1959), Ershov (1959), and Péter (1958). The names of mathematicians Hermes (1954, 1955, 1961) and Kaphenst (1959) appear in the bibliographies of both Sheperdson-Sturgis (1963) and Elgot-Robinson (1961). Two other names of importance are Canadian researchers Melzak (1961) and Lambek (1961). For much more see Turing machine equivalents; references can be found at
register machine In mathematical logic and theoretical computer science a register machine is a generic class of abstract machines used in a manner similar to a Turing machine. All the models are Turing equivalent. Overview The register machine gets its name fro ...
.


Mathematical theory

With this encoding of action tables as strings, it becomes possible, in principle, for Turing machines to answer questions about the behaviour of other Turing machines. Most of these questions, however, are undecidable, meaning that the function in question cannot be calculated mechanically. For instance, the problem of determining whether an arbitrary Turing machine will halt on a particular input, or on all inputs, known as the
Halting problem In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. Alan Turing proved in 1936 that a ...
, was shown to be, in general, undecidable in Turing's original paper. Rice's theorem shows that any non-trivial question about the output of a Turing machine is undecidable. A universal Turing machine can calculate any recursive function, decide any recursive language, and accept any recursively enumerable language. According to the
Church–Turing thesis In computability theory, the Church–Turing thesis (also known as computability thesis, the Turing–Church thesis, the Church–Turing conjecture, Church's thesis, Church's conjecture, and Turing's thesis) is a thesis about the nature of co ...
, the problems solvable by a universal Turing machine are exactly those problems solvable by an ''
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
'' or an ''effective method of computation'', for any reasonable definition of those terms. For these reasons, a universal Turing machine serves as a standard against which to compare computational systems, and a system that can simulate a universal Turing machine is called
Turing complete Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical ...
. An abstract version of the universal Turing machine is the universal function, a computable function which can be used to calculate any other computable function. The UTM theorem proves the existence of such a function.


Efficiency

Without loss of generality, the input of Turing machine can be assumed to be in the alphabet ; any other finite alphabet can be encoded over . The behavior of a Turing machine ''M'' is determined by its transition function. This function can be easily encoded as a string over the alphabet as well. The size of the alphabet of ''M'', the number of tapes it has, and the size of the state space can be deduced from the transition function's table. The distinguished states and symbols can be identified by their position, e.g. the first two states can by convention be the start and stop states. Consequently, every Turing machine can be encoded as a string over the alphabet . Additionally, we convene that every invalid encoding maps to a trivial Turing machine that immediately halts, and that every Turing machine can have an infinite number of encodings by padding the encoding with an arbitrary number of (say) 1's at the end, just like comments work in a programming language. It should be no surprise that we can achieve this encoding given the existence of a Gödel number and computational equivalence between Turing machines and μ-recursive functions. Similarly, our construction associates to every binary string ''α'', a Turing machine ''Mα''. Starting from the above encoding, in 1966 F. C. Hennie and R. E. Stearns showed that given a Turing machine ''Mα'' that halts on input ''x'' within ''N'' steps, then there exists a multi-tape universal Turing machine that halts on inputs ''α'', ''x'' (given on different tapes) in ''CN'' log ''N'', where ''C'' is a machine-specific constant that does not depend on the length of the input ''x'', but does depend on ''Ms alphabet size, number of tapes, and number of states. Effectively this is an \mathcal\left ( N \log \right ) simulation, using
Donald Knuth Donald Ervin Knuth ( ; born January 10, 1938) is an American computer scientist, mathematician, and professor emeritus at Stanford University. He is the 1974 recipient of the ACM Turing Award, informally considered the Nobel Prize of computer sc ...
's
Big O notation Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund L ...
. The corresponding result for space-complexity rather than time-complexity is that we can simulate in a way that uses at most ''CN'' cells at any stage of the computation, an \mathcal(N) simulation.


Smallest machines

When Alan Turing came up with the idea of a universal machine he had in mind the simplest computing model powerful enough to calculate all possible functions that can be calculated.
Claude Shannon Claude Elwood Shannon (April 30, 1916 – February 24, 2001) was an American mathematician, electrical engineer, and cryptographer known as a "father of information theory". As a 21-year-old master's degree student at the Massachusetts I ...
first explicitly posed the question of finding the smallest possible universal Turing machine in 1956. He showed that two symbols were sufficient so long as enough states were used (or vice versa), and that it was always possible to exchange states for symbols. He also showed that no universal Turing machine of one state could exist.
Marvin Minsky Marvin Lee Minsky (August 9, 1927 – January 24, 2016) was an American cognitive and computer scientist concerned largely with research of artificial intelligence (AI), co-founder of the Massachusetts Institute of Technology's AI laboratory ...
discovered a 7-state 4-symbol universal Turing machine in 1962 using 2-tag systems. Other small universal Turing machines have since been found by Yurii Rogozhin and others by extending this approach of tag system simulation. If we denote by (''m'', ''n'') the class of UTMs with ''m'' states and ''n'' symbols the following tuples have been found: (15, 2), (9, 3), (6, 4), (5, 5), (4, 6), (3, 9), and (2, 18). Rogozhin's (4, 6) machine uses only 22 instructions, and no standard UTM of lesser descriptional complexity is known. However, generalizing the standard Turing machine model admits even smaller UTMs. One such generalization is to allow an infinitely repeated word on one or both sides of the Turing machine input, thus extending the definition of universality and known as "semi-weak" or "weak" universality, respectively. Small weakly universal Turing machines that simulate the Rule 110 cellular automaton have been given for the (6, 2), (3, 3), and (2, 4) state-symbol pairs. The proof of universality for Wolfram's 2-state 3-symbol Turing machine further extends the notion of weak universality by allowing certain non-periodic initial configurations. Other variants on the standard Turing machine model that yield small UTMs include machines with multiple tapes or tapes of multiple dimension, and machines coupled with a
finite automaton A finite-state machine (FSM) or finite-state automaton (FSA, plural: ''automata''), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number o ...
.


Machines with no internal states

If multiple heads are allowed on a Turing machine then no internal states are required; as "states" can be encoded in the tape. For example, consider a tape with 6 colours: 0, 1, 2, 0A, 1A, 2A. Consider a tape such as 0,0,1,2,2A,0,2,1 where a 3-headed Turing machine is situated over the triple (2,2A,0). The rules then convert any triple to another triple and move the 3-heads left or right. For example, the rules might convert (2,2A,0) to (2,1,0) and move the head left. Thus in this example the machine acts like a 3-colour Turing machine with internal states A and B (represented by no letter). The case for a 2-headed Turing machine is very similar. Thus a 2-headed Turing machine can be Universal with 6 colours. It is not known what the smallest number of colours needed for a multi-headed Turing machine are or if a 2-colour Universal Turing machine is possible with multiple heads. It also means that rewrite rules are Turing complete since the triple rules are equivalent to rewrite rules. Extending the tape to two dimensions with a head sampling a letter and its 8 neighbours, only 2 colours are needed, as for example, a colour can be encoded in a vertical triple pattern such as 110.


Example of universal-machine coding

For those who would undertake the challenge of designing a UTM exactly as Turing specified see the article by Davies in Copeland (2004:103ff). Davies corrects the errors in the original and shows what a sample run would look like. He claims to have successfully run a (somewhat simplified) simulation. The following example is taken from Turing (1936). For more about this example, see Turing machine examples. Turing used seven symbols to encode each 5-tuple; as described in the article
Turing machine A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer alg ...
, his 5-tuples are only of types N1, N2, and N3. The number of each "mconfiguration" (instruction, state) is represented by "D" followed by a unary string of A's, e.g. "q3" = DAAA. In a similar manner he encodes the symbols blank as "D", the symbol "0" as "DC", the symbol "1" as DCC, etc. The symbols "R", "L", and "N" remain as is. After encoding each 5-tuple is then "assembled" into a string in order as shown in the following table: Finally, the codes for all four 5-tuples are strung together into a code started by ";" and separated by ";" i.e.: This code he placed on alternate squares—the "F-squares" – leaving the "E-squares" (those liable to erasure) empty. The final assembly of the code on the tape for the U-machine consists of placing two special symbols ("e") one after the other, then the code separated out on alternate squares, and lastly the double-colon symbol "::" (blanks shown here with "." for clarity): The U-machine's action-table (state-transition table) is responsible for decoding the symbols. Turing's action table keeps track of its place with markers "u", "v", "x", "y", "z" by placing them in "E-squares" to the right of "the marked symbol" – for example, to mark the current instruction z is placed to the right of ";" x is keeping the place with respect to the current "mconfiguration" DAA. The U-machine's action table will shuttle these symbols around (erasing them and placing them in different locations) as the computation progresses: Turing's action-table for his U-machine is very involved. A number of other commentators (notably Penrose 1989) provide examples of ways to encode instructions for the Universal machine. As does Penrose, most commentators use only binary symbols i.e. only symbols , or . Penrose goes further and writes out his entire U-machine code (Penrose 1989:71–73). He asserts that it truly is a U-machine code, an enormous number that spans almost 2 full pages of 1's and 0's. For readers interested in simpler encodings for the Post–Turing machine the discussion of Davis in Steen (Steen 1980:251ff) may be useful. Asperti and Ricciotti described a multi-tape UTM defined by composing elementary machines with very simple semantics, rather than explicitly giving its full action table. This approach was sufficiently modular to allow them to formally prove the correctness of the machine in the Matita proof assistant.


Programming Turing machines

Various higher level languages are designed to be compiled into a Turing machine. Examples include Laconic and Turing Machine Descriptor.


See also

*
Alternating Turing machine In computational complexity theory, an alternating Turing machine (ATM) is a non-deterministic Turing machine (NTM) with a rule for accepting computations that generalizes the rules used in the definition of the complexity classes NP (complexity ...
* Von Neumann universal constructor – an attempt to build a self-replicating Turing machine * Kleene's T predicate – a similar concept for µ-recursive functions * Turing completeness


References

General references * Original Paper * Seminal papers * Implementation * Formal verification * Other references * *. * *
* * The first of Knuth's series of three texts. * * * * * * * * *)


External links

{{DEFAULTSORT:Universal Turing Machine Turing machine