Unbihexium
   HOME

TheInfoList



OR:

Unbihexium, also known as element 126 or eka-plutonium, is the hypothetical chemical element with
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
126 and placeholder symbol Ubh. ''Unbihexium'' and ''Ubh'' are the temporary IUPAC name and symbol, respectively, until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table, unbihexium is expected to be a g-block superactinide and the eighth element in the 8th
period Period may refer to: Common uses * Era, a length or span of time * Full stop (or period), a punctuation mark Arts, entertainment, and media * Period (music), a concept in musical composition * Periodic sentence (or rhetorical period), a concept ...
. Unbihexium has attracted attention among nuclear physicists, especially in early predictions targeting properties of superheavy elements, for 126 may be a magic number of protons near the center of an island of stability, leading to longer half-lives, especially for 310Ubh or 354Ubh which may also have magic numbers of neutrons. Early interest in possible increased stability led to the first attempted synthesis of unbihexium in 1971 and searches for it in nature in subsequent years. Despite several reported observations, more recent studies suggest that these experiments were insufficiently sensitive; hence, no unbihexium has been found naturally or artificially. Predictions of the stability of unbihexium vary greatly among different models; some suggest the island of stability may instead lie at a lower atomic number, closer to
copernicium Copernicium is a synthetic chemical element with the symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of ap ...
and
flerovium Flerovium is a superheavy chemical element with symbol Fl and atomic number 114. It is an extremely radioactive synthetic element. It is named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dubn ...
. Unbihexium is predicted to be a chemically active superactinide, exhibiting a variety of oxidation states from +1 to +8, and possibly being a heavier congener of
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
. An overlap in energy levels of the 5g, 6f, 7d, and 8p orbitals is also expected, which complicates predictions of chemical properties for this element.


Introduction


History


Synthesis attempts

The first and only attempt to synthesize unbihexium, which was unsuccessful, was performed in 1971 at
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gene ...
(European Organization for Nuclear Research) by René Bimbot and John M. Alexander using the hot fusion reaction: : + → * → no atoms High-energy (13-15
MeV In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacu ...
)
alpha particles Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be prod ...
were observed and taken as possible evidence for the synthesis of unbihexium. Subsequent unsuccessful experiments with higher sensitivity suggest that the 10 mb sensitivity of this experiment was too low; hence, the formation of unbihexium nuclei in this reaction was deemed highly unlikely.


Possible natural occurrence

A study in 1976 by a group of American researchers from several universities proposed that primordial superheavy elements, mainly
livermorium Livermorium is a synthetic chemical element with the symbol Lv and has an atomic number of 116. It is an extremely radioactive element that has only been created in a laboratory setting and has not been observed in nature. The element is named aft ...
,
unbiquadium Unbiquadium, also known as element 124 or eka-uranium, is the hypothetical chemical element with atomic number 124 and placeholder symbol Ubq. ''Unbiquadium'' and ''Ubq'' are the temporary IUPAC name and symbol, respectively, until the element ...
, unbihexium, and unbiseptium, with half-lives exceeding 500 million years could be a cause of unexplained radiation damage (particularly
radiohalos A pleochroic halo, or radiohalo, is a microscopic, spherical shell of discolouration (pleochroism) within minerals such as biotite that occurs in granite and other igneous rocks. The halo is a zone of radiation damage caused by the inclusion of ...
) in minerals. This prompted many researchers to search for them in nature from 1976 to 1983. A group led by Tom Cahill, a professor at the
University of California at Davis The University of California, Davis (UC Davis, UCD, or Davis) is a public land-grant research university near Davis, California. Named a Public Ivy, it is the northernmost of the ten campuses of the University of California system. The institut ...
, claimed in 1976 that they had detected alpha particles and
X-rays An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 Picometre, picometers to 10 Nanometre, nanometers, corresponding to frequency, ...
with the right energies to cause the damage observed, supporting the presence of these elements, especially unbihexium. Others claimed that none had been detected, and questioned the proposed characteristics of primordial superheavy nuclei. In particular, they cited that the magic number ''N'' = 228 necessary for enhanced stability would create a neutron-excessive nucleus in unbihexium that might not be
beta-stable Beta-decay stable isobars are the set of nuclides which cannot undergo beta decay, that is, the transformation of a neutron to a proton or a proton to a neutron within the nucleus. A subset of these nuclides are also stable with regards to doubl ...
, although several calculations suggest that 354Ubh may indeed be stable against
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
. This activity was also proposed to be caused by nuclear transmutations in natural
cerium Cerium is a chemical element with the symbol Ce and atomic number 58. Cerium is a soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it often shows the +3 o ...
, raising further ambiguity upon this claimed observation of superheavy elements. Unbihexium has received particular attention in these investigations, for its speculated location in the island of stability may increase its abundance relative to other superheavy elements. Any naturally occurring unbihexium is predicted to be chemically similar to
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
and may exist with primordial 244Pu in the rare earth mineral
bastnäsite The mineral bastnäsite (or bastnaesite) is one of a family of three carbonate-fluoride minerals, which includes bastnäsite-( Ce) with a formula of (Ce, La)CO3F, bastnäsite-( La) with a formula of (La, Ce)CO3F, and bastnäsite-( Y) with a formul ...
. In particular, plutonium and unbihexium are predicted to have similar valence configurations, leading to the existence of unbihexium in the +4
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
. Therefore, should unbihexium occur naturally, it may be possible to extract it using similar techniques for the accumulation of cerium and plutonium. Likewise, unbihexium could also exist in
monazite Monazite is a primarily reddish-brown phosphate mineral that contains rare-earth elements. Due to variability in composition, monazite is considered a group of minerals. The most common species of the group is monazite-(Ce), that is, the cerium- ...
with other
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yttr ...
s and
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The inform ...
s that would be chemically similar. Recent doubt on the existence of primordial 244Pu casts uncertainty on these predictions, however, as the nonexistence (or minimal existence) of plutonium in bastnäsite will inhibit possible identification of unbihexium as its heavier congener. The possible extent of primordial superheavy elements on Earth today is uncertain. Even if they are confirmed to have caused the radiation damage long ago, they might now have decayed to mere traces, or even be completely gone. It is also uncertain if such superheavy nuclei may be produced naturally at all, as
spontaneous fission Spontaneous fission (SF) is a form of radioactive decay that is found only in very heavy chemical elements. The nuclear binding energy of the elements reaches its maximum at an atomic mass number of about 56 (e.g., iron-56); spontaneous breakdo ...
is expected to terminate the
r-process In nuclear astrophysics, the rapid neutron-capture process, also known as the ''r''-process, is a set of nuclear reactions that is responsible for the creation of approximately half of the atomic nuclei heavier than iron, the "heavy elements", ...
responsible for heavy element formation between
mass number The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxima ...
270 and 290, well before elements such as unbihexium may be formed. A recent hypothesis tries to explain the spectrum of Przybylski's Star by naturally occurring
flerovium Flerovium is a superheavy chemical element with symbol Fl and atomic number 114. It is an extremely radioactive synthetic element. It is named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dubn ...
,
unbinilium Unbinilium, also known as eka-radium or simply element 120, is the hypothetical chemical element in the periodic table with symbol Ubn and atomic number 120. ''Unbinilium'' and ''Ubn'' are the temporary systematic IUPAC name and symbol, which ar ...
, and unbihexium.


Naming

Using the 1979 IUPAC recommendations, the element should be temporarily called ''unbihexium'' (symbol ''Ubh'') until it is discovered, the discovery is confirmed, and a permanent name chosen. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations are mostly ignored among scientists who work theoretically or experimentally on superheavy elements, who call it "element 126", with the symbol ''E126'', ''(126)'', or ''126''. Some researchers have also referred to unbihexium as ''eka-plutonium'', a name derived from the system Dmitri Mendeleev used to predict unknown elements, though such an extrapolation might not work for g-block elements with no known congeners, and ''eka-plutonium'' would instead refer to element 146 or 148 when the term is meant to denote the element directly below plutonium.


Prospects for future synthesis

Every element from
mendelevium Mendelevium is a synthetic element with the symbol Md ( formerly Mv) and atomic number 101. A metallic radioactive transuranium element in the actinide series, it is the first element by atomic number that currently cannot be produced in macroscopi ...
onward was produced in fusion-evaporation reactions, culminating in the discovery of the heaviest known element,
oganesson Oganesson is a synthetic chemical element with the symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint team of Russian and American scient ...
, in 2002 and most recently
tennessine Tennessine is a synthetic chemical element with the symbol Ts and atomic number 117. It is the second-heaviest known element and the penultimate element of the 7th period of the periodic table. The discovery of tennessine was officially ann ...
in 2010. These reactions approached the limit of current technology; for example, the synthesis of tennessine required 22 milligrams of 249Bk and an intense 48Ca beam for six months. The intensity of beams in superheavy element research cannot exceed 1012 projectiles per second without damaging the target and detector, and producing larger quantities of increasingly rare and unstable
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The inform ...
targets is impractical. Consequently, future experiments must be done at facilities such as the superheavy element factory (SHE-factory) at the
Joint Institute for Nuclear Research The Joint Institute for Nuclear Research (JINR, russian: Объединённый институт ядерных исследований, ОИЯИ), in Dubna, Moscow Oblast (110 km north of Moscow), Russia, is an international research cen ...
(JINR) or RIKEN, which will allow experiments to run for longer time periods with increased detection capabilities and enable otherwise inaccessible reactions. Even so, it will likely be a great challenge to synthesize elements beyond
unbinilium Unbinilium, also known as eka-radium or simply element 120, is the hypothetical chemical element in the periodic table with symbol Ubn and atomic number 120. ''Unbinilium'' and ''Ubn'' are the temporary systematic IUPAC name and symbol, which ar ...
(120) or
unbiunium Unbiunium, also known as eka-actinium or simply element 121, is the hypothetical chemical element with symbol Ubu and atomic number 121. ''Unbiunium'' and ''Ubu'' are the temporary systematic IUPAC name and symbol respectively, which are used unt ...
(121), given their short predicted half-lives and low predicted cross sections. It has been suggested that fusion-evaporation will not be feasible to reach unbihexium. As 48Ca cannot be used for synthesis of elements beyond atomic number 118 or possibly 119, the only alternatives are increasing the atomic number of the projectile or studying symmetric or near-symmetric reactions. One calculation suggests that the cross section for producing unbihexium from 249Cf and 64Ni may be as low as nine orders of magnitude lower than the detection limit; such results are also suggested by the non-observation of
unbinilium Unbinilium, also known as eka-radium or simply element 120, is the hypothetical chemical element in the periodic table with symbol Ubn and atomic number 120. ''Unbinilium'' and ''Ubn'' are the temporary systematic IUPAC name and symbol, which ar ...
and
unbibium Unbibium, also known as element 122 or eka-thorium, is the hypothetical chemical element in the periodic table with the placeholder symbol of Ubb and atomic number 122. ''Unbibium'' and ''Ubb'' are the temporary systematic IUPAC name and symbol r ...
in reactions with heavier projectiles and experimental cross section limits. If ''Z'' = 126 represents a closed proton shell, compound nuclei may have greater survival probability and the use of 64Ni may be more feasible for producing nuclei with 122 < ''Z'' < 126, especially for compound nuclei near the closed shell at ''N'' = 184. However, the cross section still might not exceed 1  fb, posing an obstacle that may only be overcome with more sensitive equipment.


Predicted properties


Nuclear stability and isotopes

Extensions of the
nuclear shell model In nuclear physics, atomic physics, and nuclear chemistry, the nuclear shell model is a model of the atomic nucleus which uses the Pauli exclusion principle to describe the structure of the nucleus in terms of energy levels. The first shell mod ...
predicted that the next magic numbers after ''Z'' = 82 and ''N'' = 126 (corresponding to 208Pb, the heaviest stable nucleus) were ''Z'' = 126 and ''N'' = 184, making 310Ubh the next candidate for a doubly magic nucleus. These speculations led to interest in the stability of unbihexium as early as 1957; Gertrude Scharff Goldhaber was one of the first physicists to predict a region of increased stability in the vicinity of, and possibly centered at, unbihexium. This notion of an " island of stability" comprising longer-lived superheavy nuclei was popularized by
University of California The University of California (UC) is a public land-grant research university system in the U.S. state of California. The system is composed of the campuses at Berkeley, Davis, Irvine, Los Angeles, Merced, Riverside, San Diego, San Francisco, ...
professor
Glenn Seaborg Glenn Theodore Seaborg (; April 19, 1912February 25, 1999) was an American chemist whose involvement in the synthesis, discovery and investigation of ten transuranium elements earned him a share of the 1951 Nobel Prize in Chemistry. His work i ...
in the 1960s. In this region of the periodic table, ''N'' = 184 and ''N'' = 228 have been suggested as closed neutron shells, and various atomic numbers, including ''Z'' = 126, have been proposed as closed proton shells. The extent of stabilizing effects in the region of unbihexium is uncertain, however, due to predictions of shifting or weakening of the proton shell closure and possible loss of double magicity. More recent research predicts the island of stability to instead be centered at
beta-stable Beta-decay stable isobars are the set of nuclides which cannot undergo beta decay, that is, the transformation of a neutron to a proton or a proton to a neutron within the nucleus. A subset of these nuclides are also stable with regards to doubl ...
isotopes of
copernicium Copernicium is a synthetic chemical element with the symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of ap ...
(291Cn and 293Cn) or
flerovium Flerovium is a superheavy chemical element with symbol Fl and atomic number 114. It is an extremely radioactive synthetic element. It is named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dubn ...
(''Z'' = 114), which would place unbihexium well above the island and result in short half-lives regardless of shell effects. Earlier models suggested the existence of long-lived
nuclear isomers A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy higher energy levels than in the ground state of the same nucleus. "Metastable" describes nuclei whose excited states have ha ...
resistant to
spontaneous fission Spontaneous fission (SF) is a form of radioactive decay that is found only in very heavy chemical elements. The nuclear binding energy of the elements reaches its maximum at an atomic mass number of about 56 (e.g., iron-56); spontaneous breakdo ...
in the region near 310Ubh, with half-lives on the order of millions or billions of years. However, more rigorous calculations as early as the 1970s yielded contradictory results; it is now believed that the island of stability is not centered at 310Ubh, and thus will not enhance the stability of this nuclide. Instead, 310Ubh is thought to be very neutron-deficient and susceptible to
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an atom ...
and spontaneous fission in less than a microsecond, and it may even lie at or beyond the
proton drip line The nuclear drip line is the boundary beyond which atomic nuclei decay by the emission of a proton or neutron. An arbitrary combination of protons and neutrons does not necessarily yield a stable nucleus. One can think of moving up and/or to ...
. A 2016 calculation on the decay properties of 288–339Ubh upholds these predictions; the isotopes lighter than 313Ubh (including 310Ubh) may indeed lie beyond the drip line and decay by
proton emission Proton emission (also known as proton radioactivity) is a rare type of radioactive decay in which a proton is ejected from a nucleus. Proton emission can occur from high-lying excited states in a nucleus following a beta decay, in which case t ...
, 313–327Ubh will alpha decay, possibly reaching flerovium and livermorium isotopes, and heavier isotopes will decay by
spontaneous fission Spontaneous fission (SF) is a form of radioactive decay that is found only in very heavy chemical elements. The nuclear binding energy of the elements reaches its maximum at an atomic mass number of about 56 (e.g., iron-56); spontaneous breakdo ...
. This study and a
quantum tunneling In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
model predict alpha-decay half-lives under a microsecond for isotopes lighter than 318Ubh, rendering them impossible to identify experimentally. Hence, the isotopes 318–327Ubh may be synthesized and detected, and may even constitute a region of increased stability against fission around ''N'' ~ 198 with half-lives up to several seconds, though such a region of increased stability is completely absent in other models. A "sea of instability" defined by very low
fission barrier In nuclear physics and nuclear chemistry, the fission barrier is the activation energy required for a atomic nucleus, nucleus of an atom to undergo Nuclear fission, fission. This barrier may also be defined as the minimum amount of energy require ...
s (caused by greatly increasing
Coulomb repulsion Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventiona ...
in superheavy elements) and consequently fission half-lives on the order of 10−18 seconds is predicted across various models. Although the exact limit of stability for half-lives over one microsecond varies, stability against fission is strongly dependent on the ''N'' = 184 and ''N'' = 228 shell closures and rapidly drops off immediately beyond the influence of the shell closure. Such an effect may be reduced, however, if nuclear deformation in intermediate isotopes may lead to a shift in magic numbers; a similar phenomenon was observed in the deformed doubly magic nucleus 270Hs. This shift could then lead to longer half-lives, perhaps on the order of days, for isotopes such as 342Ubh that would also lie on the
beta-stability line Beta-decay stable isobars are the set of nuclides which cannot undergo beta decay, that is, the transformation of a neutron to a proton or a proton to a neutron within the nucleus. A subset of these nuclides are also stable with regards to doub ...
. A second island of stability for
spherical A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ce ...
nuclei may exist in unbihexium isotopes with many more neutrons, centered at 354Ubh and conferring additional stability in ''N'' = 228
isotone Two nuclides are isotones if they have the same neutron number ''N'', but different proton number ''Z''. For example, boron-12 and carbon-13 nuclei both contain 7 neutrons, and so are isotones. Similarly, 36S, 37Cl, 38Ar, 39K, and 40Ca nucl ...
s near the beta-stability line. Originally, a short half-life of 39 milliseconds was predicted for 354Ubh toward spontaneous fission, though a partial alpha half-life for this isotope was predicted to be 18 years. More recent analysis suggests that this isotope may have a half-life on the order of 100 years should the closed shells have strong stabilizing effects, placing it at the peak of an island of stability. It may also be possible that 354Ubh is not doubly magic, as the ''Z'' = 126 shell is predicted to be relatively weak, or in some calculations, completely nonexistent. This suggests that any relative stability in unbihexium isotopes would be only due to neutron shell closures that may or may not have a stabilizing effect at ''Z'' = 126.


Chemical

Unbihexium is expected to be the sixth member of a superactinide series. It may have similarities to
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
, as both elements have eight valence electrons over a noble gas core. In the superactinide series, the
Aufbau principle The aufbau principle , from the German ''Aufbauprinzip'' (building-up principle), also called the aufbau rule, states that in the ground state of an atom or ion, electrons fill subshells of the lowest available energy, then they fill subshells o ...
is expected to break down due to
relativistic effects Relativistic quantum chemistry combines relativistic mechanics with quantum chemistry to calculate elemental properties and structure, especially for the heavier elements of the periodic table. A prominent example is an explanation for the color of ...
, and an overlap of the energy levels of the 7d, 8p, and especially 5g and 6f orbitals is expected, which renders predictions of chemical and atomic properties of these elements very difficult. The ground state electron configuration of unbihexium is thus predicted to be [Og] 5g2 6f3 8s2 8p1 or 5g1 6f4 8s2 8p1, in contrast to [Og] 5g6 8s2 derived from Aufbau. As with the other early superactinides, it is predicted that unbihexium will be able to lose all eight valence electrons in chemical reactions, rendering a variety of
oxidation states In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
up to +8 possible. The +4 oxidation state is predicted to be most common, in addition to +2 and +6. Unbihexium should be able to form the tetroxide UbhO4 and hexahalides UbhF6 and UbhCl6, the latter with a fairly strong
bond dissociation energy The bond-dissociation energy (BDE, ''D''0, or ''DH°'') is one measure of the strength of a chemical bond . It can be defined as the standard enthalpy change when is cleaved by homolysis to give fragments A and B, which are usually radical s ...
of 2.68 eV. Calculations suggest that a diatomic UbhF molecule will feature a bond between the 5g orbital in unbihexium and the 2p orbital in fluorine, thus characterizing unbihexium as an element whose 5g electrons should actively participate in bonding. It is also predicted that the Ubh6+ (in particular, in UbhF6) and Ubh7+ ions will have the electron configurations [Og] 5g2 and [Og] 5g1, respectively, in contrast to the [Og] 6f1 configuration seen in Ubt4+ and Ubq5+ that bears more resemblance to their actinide
homologs A couple of homologous chromosomes, or homologs, are a set of one maternal and one paternal chromosome that pair up with each other inside a cell during fertilization. Homologs have the same genes in the same loci where they provide points alon ...
. The activity of 5g electrons may influence the chemistry of superactinides such as unbihexium in new ways that are difficult to predict, as no known elements have electrons in a ''g'' orbital in the ground state.


See also

* Island of stability:
flerovium Flerovium is a superheavy chemical element with symbol Fl and atomic number 114. It is an extremely radioactive synthetic element. It is named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dubn ...
unbinilium Unbinilium, also known as eka-radium or simply element 120, is the hypothetical chemical element in the periodic table with symbol Ubn and atomic number 120. ''Unbinilium'' and ''Ubn'' are the temporary systematic IUPAC name and symbol, which ar ...
–unbihexium


Notes


References


Bibliography

*
pp. 030001-1–030001-17pp. 030001-18–030001-138, Table I. The NUBASE2016 table of nuclear and decay properties
* * * * {{Extended periodic table (by Fricke, 32 columns, compact) Hypothetical chemical elements