HOME

TheInfoList



OR:

Uranium-234 (234U or U-234) is an isotope of uranium. In natural uranium and in uranium ore, 234U occurs as an indirect decay product of
uranium-238 Uranium-238 (238U or U-238) is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it ...
, but it makes up only 0.0055% (55
parts per million In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, they ...
) of the raw uranium because its
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
of just 245,500 years is only about 1/18,000 as long as that of 238U. Thus the rate of to in a natural sample is equivalent to the rate of their half lives to one another. The primary path of production of 234U via
nuclear decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
is as follows: uranium-238 nuclei emit an
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produce ...
to become
thorium-234 Thorium (90Th) has seven naturally occurring isotopes but none are stable. One isotope, 232Th, is ''relatively'' stable, with a half-life of 1.405×1010 years, considerably longer than the age of the Earth, and even slightly longer than the gene ...
. Next, with a short half-life, 234Th nuclei emit a beta particle to become
protactinium Protactinium (formerly protoactinium) is a chemical element with the symbol Pa and atomic number 91. It is a dense, silvery-gray actinide metal which readily reacts with oxygen, water vapor and inorganic acids. It forms various chemical compounds ...
-234 (234Pa), or more likely a
nuclear isomer A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy excited state, higher energy levels than in the ground state of the same nucleus. "Metastable" describes nuclei whose excited ...
denoted 234mPa. Finally, 234Pa or 234mPa nuclei emit another beta particle to become 234U nuclei. Uranium-234 nuclei decay by
alpha emission Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an at ...
to thorium-230, except for the tiny fraction (parts per billion) of nuclei that undergo
spontaneous fission Spontaneous fission (SF) is a form of radioactive decay that is found only in very heavy chemical elements. The nuclear binding energy of the elements reaches its maximum at an atomic mass number of about 56 (e.g., iron-56); spontaneous breakdo ...
. Extraction of rather small amounts of 234U from natural uranium would be feasible using
isotope separation Isotope separation is the process of concentrating specific isotopes of a chemical element by removing other isotopes. The use of the nuclides produced is varied. The largest variety is used in research (e.g. in chemistry where atoms of "marker" n ...
, similar to that used for regular uranium-enrichment. However, there is no real demand in
chemistry Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science that covers the Chemical element, elements that make up matter to the chemical compound, compounds made of atoms, molecules and ions ...
,
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, or
engineering Engineering is the use of scientific method, scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad rang ...
for isolating 234U. Very small pure samples of 234U can be extracted via the chemical ion-exchange process from samples of
plutonium-238 Plutonium-238 (238Pu or Pu-238) is a fissile, radioactive isotope of plutonium that has a half-life of 87.7 years. Plutonium-238 is a very powerful alpha emitter; as alpha particles are easily blocked, this makes the plutonium-238 isotope suita ...
that have been aged somewhat to allow some decay to 234U via
alpha emission Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an at ...
.
Enriched uranium Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (238U ...
contains more 234U than natural uranium as a byproduct of the uranium enrichment process aimed at obtaining
uranium-235 Uranium-235 (235U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exis ...
, which concentrates lighter isotopes even more strongly than it does 235U. IAEA research paper TECDOC-1529 concludes the 234U content of enriched fuel is directly proportional to the degree of 235U—enrichment with 2% 235U resulting in 150 g 234U/ton HM, and the most common 4.5% 235U enrichment resulting in 400 g 234U/tonHM. The increased percentage of 234U in enriched natural uranium is acceptable in current
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nu ...
s. Recycled (re-enriched)
reprocessed uranium Reprocessed uranium (RepU) is the uranium recovered from nuclear reprocessing, as done commercially in France, the UK and Japan and by nuclear weapons states' military plutonium production programs. This uranium makes up the bulk of the material s ...
contains even higher fractions of 234U. This is advantageous because while 234U is not
fissile In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be typ ...
, it tends to absorb slow
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s in a nuclear reactor breeding 235U. This is much more efficient than the series of steps 238U + n → 239Np239Pu in replacing fissile isotope consumption. Uranium-234 has a neutron-capture cross section of about 100
barn A barn is an agricultural building usually on farms and used for various purposes. In North America, a barn refers to structures that house livestock, including cattle and horses, as well as equipment and fodder, and often grain.Allen G. ...
s for
thermal neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s, and about 700 barns for its
resonance integral Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, ...
—the average of neutrons having a range of intermediate energies. In a
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nu ...
non-fissile isotopes 234U and 238U both capture a neutron breeding fissile isotopes 235U and 239Pu respectively. 234U is converted to 235U more easily and therefore at a greater rate than 238U is to 239Pu (via
neptunium-239 Neptunium (93Np) is usually considered an artificial element, although trace quantities are found in nature, so a standard atomic weight cannot be given. Like all trace or artificial elements, it has no stable isotopes. The first isotope to be ...
) because 238U has a much smaller neutron-capture cross section of just 2.7 barns. In the reaction 234U + n → 235U reaction, the 234U content of 4.5% enriched fuel drops steadily over the irradiation period falling from 450g/ton HM to 205g/ton HM in fuel with an irradiation of 60GWd/ton HM. Additionally, (n, 2n) reactions with fast neutrons also convert small amounts of 235U to 234U. This is countered by the rapid conversion of available 234U into 235U through
thermal neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
capture.
Spent fuel Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor a ...
may contain as much as 0.010% 234U, or 100
parts per million In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, they ...
, a higher fraction than in natural uranium's 55 parts per million.
Depleted uranium Depleted uranium (DU; also referred to in the past as Q-metal, depletalloy or D-38) is uranium with a lower content of the fissile isotope than natural uranium.: "Depleted uranium possesses only 60% of the radioactivity of natural uranium, hav ...
separated during the enrichment process contains much less 234U (around 0.001%WHO , Depleted uranium
), which makes the radioactivity of depleted uranium about half of that of natural uranium. Natural uranium has an "equilibrium" concentration of 234U—the point at which an equal number of decays of 238U and 234U will occur.


See also

*
Uranium–uranium dating Uranium–uranium dating is a radiometric dating technique which compares two isotopes of uranium (U) in a sample: uranium-234 (234U) and uranium-238 (238U). It is one of several radiometric dating techniques exploiting the uranium radioactive dec ...


References

{{Isotopes of uranium Actinides Isotopes of uranium Fertile materials